
grackle Documentation
Release 1.0

January 10, 2014

Contents

i

ii

grackle Documentation, Release 1.0

Grackle is a chemistry and radiative cooling library for astrophysical simulations. It is a generalized and trimmed
down version of the chemistry network of the Enzo simulation code. Grackle provides:

• two options for primordial chemistry and cooling:

1. non-equilibrium primordial chemistry network for atomic H, D, and He as well as H2 and HD, including
H2 formation on dust grains.

2. tabulated H and He cooling rates calculated with the photo-ionization code, Cloudy.

• tabulated metal cooling rates calculated with Cloudy.

• photo-heating and photo-ionization from two UV backgrounds:

1. Faucher-Giguere et al. (2009).

2. Haardt & Madau (2012).

The Grackle provides functions to update chemistry species; solve radiative cooling and update internal energy; and
calculate cooling time, temperature, pressure, and ratio of specific heats (gamma).

Contents:

Contents 1

http://enzo-project.org
http://nublado.org
http://nublado.org
http://adsabs.harvard.edu/abs/2009ApJ...703.1416F
http://adsabs.harvard.edu/abs/2012ApJ...746..125H

grackle Documentation, Release 1.0

2 Contents

CHAPTER 1

Installation

The compilation process for grackle is very similar to that for Enzo. For more details on the Enzo build system, see
the Enzo build documentation.

1.1 Dependencies

In addition to C/C++ and Fortran compilers, the following dependency must also be installed:

• HDF5, the hierarchical data format. HDF5 also may require the szip and zlib libraries, which can be found at
the HDF5 website. Compiling with HDF5 1.8 or greater requires that the compiler directive H5_USE_16_API
be specified. This can be done with -DH5_USE_16_API, which is in the machine specific make files.

1.2 Downloading

Grackle is available in a mercurial repository here. The mercurial site is here and an excellent tutorial can be found
here. With mercurial installed, grackle can be obtained with the following command:

~ $ hg clone https://bitbucket.org/brittonsmith/grackle

1.3 Building

1. Initialize the build system.

~ $ cd grackle
~/grackle $./configure

2. Proceed to the source directory.

~/grackle $ cd src/clib

3. Configure the build system.

Compile settings for different systems are stored in files starting with “Make.mach” in the source directory. Grackle
comes with three sample make macros: Make.mach.darwin for Mac OSX, Make.mach.linux-gnu for Linux
systems, and an unformatted Make.mach.unknown. If you have a make file prepared for an Enzo install, you may
use it to compile grackle, although you will need to add -fPIC as a compile-time flag. Once you have chosen the
make file to be used, a few variables should be set:

3

http://enzo-project.org
https://enzo.readthedocs.org/en/latest/tutorials/building_enzo.html
http://www.hdfgroup.org/HDF5/
https://bitbucket.org/brittonsmith/grackle
http://mercurial.selenic.com/
http://hginit.com/

grackle Documentation, Release 1.0

• LOCAL_HDF5_INSTALL - path to your hdf5 installation.

• LOCAL_FC_INSTALL - path to Fortran compilers (not including the bin subdirectory).

• MACH_INSTALL_PREFIX - path where grackle header and library files will be installed.

• MACH_INSTALL_LIB_DIR - path where libgrackle will be installed (only set if different from
MACH_INSTALL_PREFIX/lib).

• MACH_INSTALL_INCLUDE_DIR - path where grackle header files will be installed (only set if different from
MACH_INSTALL_PREFIX/include).

Once the proper variables are set, they are loaded into the build system by doing the following:

~/grackle/src/clib $ make machine-<system>

Where system refers to the make file you have chosen. For example, if you chose Make.mach.darwin, type:

~/grackle/src/clib $ make machine-darwin

Custom make files can be saved and loaded from a .grackle directory in the home directory.

1.3.1 Compiler Settings

There are three compile options available for setting the precision of floating point and integer variables and for
optimization. To see them, type:

~/grackle/src/clib $ make show-config

MACHINE: Darwin (OSX)
MACHINE-NAME: darwin

CONFIG_PRECISION [precision-{32,64}] : 64
CONFIG_INTEGERS [integers-{32,64}] : 64
CONFIG_OPT [opt-{warn,debug,cudadebug,high,aggressive}] : debug

For example, to change the optimization to high, type:

~/grackle/src/clib $ make opt-high

Custom settings can be saved for later use by typing:

~/grackle/src/clib $ make save-config-<keyword>

They will be saved in the .grackle directory in your home directory. To reload them, type:

~/grackle/src/clib $ make load-config-<keyword>

For a list of all available make commands, type:

~/grackle/src/clib $ make help

==
Grackle Makefile Help

==

make Compile and generate librackle
make install Copy the library somewhere
make help Display this help information
make clean Remove object files, executable, etc.
make dep Create make dependencies in DEPEND file

4 Chapter 1. Installation

grackle Documentation, Release 1.0

make show-version Display revision control system branch and revision
make show-diff Display local file modifications

make help-config Display detailed help on configuration make targets
make show-config Display the configuration settings
make show-flags Display specific compilation flags
make default Reset the configuration to the default values

4. Compile and Install

To build the code, type:

~/grackle/src/clib $ make
Updating DEPEND
Compiling calc_rates.F
Compiling cool1d_multi.F
....

Linking
Success!

Then, to install:

~/grackle/src/clib $ make install

Now it’s time to integrate grackle into your simulation code: Adding Grackle to Your Simulation Code

1.3. Building 5

grackle Documentation, Release 1.0

6 Chapter 1. Installation

CHAPTER 2

Adding Grackle to Your Simulation Code

2.1 Example Executables

The grackle source code contains two C++ examples that links against the grackle library. They are located in the
src/example directory and are called example.C and table_example.C. If you have already installed the grackle
library, you can build the examples by typing:

$ make example

or

$ make table_example

To run the example, make sure to add the path to the directory containing the installed libgrackle.so to your
LD_LIBRARY_PATH (or DYLD_LIBRARY_PATH on Mac).

This document follows example.C, which details the use of the full-featured grackle functions. The table_example.C
file illustrates the use of the grackle with fully tabulated cooling functions only. In this mode, a simplified set of
functions are available. For information on these, see Pure Tabulated Mode.

2.2 Header Files

Four source files are installed with the grackle library. They are:

• grackle.h - the primary header file, containing declarations for all the available functions and data structures.
This is the only header file that needs to be included.

• grackle_macros.h - this contains basic variable type definitions.

• chemistry_data.h - this defines the primary data structure which all run time parameters as well as the chem-
istry, cooling, and UV background data.

• code_units.h - this defines the structure containing conversions from code units to CGS.

The only source file that needs to be included in your simulation code is grackle.h.

2.3 Data Types

The grackle library provides two variable sized data types, one for integers and one for floating point variables. With
grackle.h included, both of these data types are available.

7

grackle Documentation, Release 1.0

• gr_int - the integer data type. This type is a 32 bit integer (int) if compiled with integers-32 and a 64 bit integer
(long int) if compiled with integers-64.

• gr_float - the floating point data type. This type is a 32 bit float (float) if compiled with precision-32 and a 64
bit float (double) if compiled with precision-64.

2.4 Code Units

The code_units structure contains conversions from code units to CGS. If comoving_coordinates is set to 0, it is
assumed that the fields passed into the solver are in the proper frame. All of the units (density, length, time, and
velocity) must be set. When using the proper frame, a_units (units for the expansion factor) must be set to 1.0.

code_units my_units;
my_units.comoving_coordinates = 0; // 1 if cosmological sim, 0 if not
my_units.density_units = 1.67e-24; // 1 m_H/cc
my_units.length_units = 3.086e21; // 1 kpc
my_units.time_units = 3.15569e13; // 1 Myr
my_units.velocity_units = my_units.length_units / my_units.time_units;
my_units.a_units = 1.0; // units for the expansion factor

If comoving_coordinates is set to 1, it is assumed that the fields being passed to the solver are in the comoving frame.
Hence, the units must convert from code units in the comoving frame to CGS in the proper frame.

Note: With comoving_coordinate set to 1, velocity units need to be defined in the following way.

my_units.velocity_units = my_units.a_units *
(my_units.length_units / a_value) / my_units.time_units; // since u = a * dx/dt

For an example of using comoving units, see the units system in the Enzo code. For cosmological simualations, a
comoving unit system is preferred, though not required, since it allows the densities to stay close to 1.0.

2.5 Chemistry Data

The chemistry_data structure contains all of the parameters for controlling the behavior of the chemistry and cooling
solver. It also contains all of the actual chemistry and cooling rate data. The routine, set_default_chemistry_parameters
creates the chemistry_data structure with the default settings and returns it. The parameters can then be set to their
desired values. See Parameters and Data Files for a full list of the available parameters.

chemistry_data my_chemistry = set_default_chemistry_parameters();
// Set parameter values for chemistry.
my_chemistry.use_grackle = 1; // chemistry on
my_chemistry.with_radiative_cooling = 1; // cooling on
my_chemistry.primordial_chemistry = 3; // molecular network with H, He, D
my_chemistry.metal_cooling = 1; // metal cooling on
my_chemistry.UVbackground = 1; // UV background on
my_chemistry.grackle_data_file = "CloudyData_UVB=HM2012.h5"; // data file

Once the desired parameters have been set, the chemistry and cooling rates must be initialized with the initial-
ize_chemistry_data. This function also requires the initial value of the expansion factor for setting internal units.
If the simulation is not cosmological, the expansion factor should be set to 1. The initializing function will return an
integer indicating success (1) or failure (0).

8 Chapter 2. Adding Grackle to Your Simulation Code

http://enzo-project.org/

grackle Documentation, Release 1.0

// Set initial expansion factor (for internal units).
// Set expansion factor to 1 for non-cosmological simulation.
gr_float initial_redshift = 100.;
gr_float a_value = 1. / (1. + initial_redshift);

// Finally, initialize the chemistry object.
if (initialize_chemistry_data(my_chemistry, my_units, a_value) == 0) {

fprintf(stderr, "Error in initialize_chemistry_data.\n");
return 0;

}

The chemistry_data structure is now ready to be used.

2.6 Creating the Necessary Fields

With the code_units and chemistry_data structures ready, the only thing left is to create the arrays to carry the species
densities. Pointers for all fields must be created, but the arrays only need to be allocated if the fields are going to
be used by the chemistry network. Variables containing the dimensionality of the data, the active dimensions (not
including the ghost zones), and the starting and ending indices for each dimensions must also be created.

// Allocate field arrays.
gr_float *density, *energy, *x_velocity, *y_velocity, *z_velocity,

*HI_density, *HII_density, *HM_density,

*HeI_density, *HeII_density, *HeIII_density,

*H2I_density, *H2II_density,

*DI_density, *DII_density, *HDI_density,

*e_density, *metal_density;

// Set grid dimension and size.
// grid_start and grid_end are used to ignore ghost zones.
gr_int field_size = 10;
gr_int grid_rank = 3;
// If grid rank is less than 3, set the other dimensions,
// start indices, and end indices to 0.
gr_int grid_dimension[3], grid_start[3], grid_end[3];
for (int i = 0;i < 3;i++) {
grid_dimension[i] = 0; // the active dimension not including ghost zones.
grid_start[i] = 0;
grid_end[i] = 0;

}
grid_dimension[0] = field_size;
grid_end[0] = field_size - 1;

density = new gr_float[field_size];
energy = new gr_float[field_size];
x_velocity = new gr_float[field_size];
y_velocity = new gr_float[field_size];
z_velocity = new gr_float[field_size];
// for primordial_chemistry >= 1
HI_density = new gr_float[field_size];
HII_density = new gr_float[field_size];
HeI_density = new gr_float[field_size];
HeII_density = new gr_float[field_size];
HeIII_density = new gr_float[field_size];
e_density = new gr_float[field_size];
// for primordial_chemistry >= 2

2.6. Creating the Necessary Fields 9

grackle Documentation, Release 1.0

HM_density = new gr_float[field_size];
H2I_density = new gr_float[field_size];
H2II_density = new gr_float[field_size];
// for primordial_chemistry >= 3
DI_density = new gr_float[field_size];
DII_density = new gr_float[field_size];
HDI_density = new gr_float[field_size];
// for metal_cooling = 1
metal_density = new gr_float[field_size];

Note: The electron mass density should be scaled by the ratio of the proton mass to the electron mass such that the
electron density in the code is the electron number density times the proton mass.

2.7 Calling the Available Functions

There are five functions available, one to solve the chemistry and cooling and four others to calculate the cooling time,
temperature, pressure, and the ratio of the specific heats (gamma). The arguments required are the code_units and
chemistry_data structures, the field size and dimension variables, and the field arrays themselves. In some cases, the
current value of the expansion factor must also be given and for the chemistry solving routine, a timestep must be
given. For the four field calculator routines, the array to be filled with the field values must be created and passed as
an argument as well.

2.7.1 Solve the Chemistry and Cooling

// some timestep (one million years)
gr_float dt = 3.15e7 * 1e6 / my_units.time_units;

if (solve_chemistry(my_chemistry, my_units,
a_value, dt,
grid_rank, grid_dimension,
grid_start, grid_end,
density, energy,
x_velocity, y_velocity, z_velocity,
HI_density, HII_density, HM_density,
HeI_density, HeII_density, HeIII_density,
H2I_density, H2II_density,
DI_density, DII_density, HDI_density,
e_density, metal_density) == 0) {

fprintf(stderr, "Error in solve_chemistry.\n");
return 0;

}

2.7.2 Calculating the Cooling Time

gr_float *cooling_time;
cooling_time = new gr_float[field_size];
if (calculate_cooling_time(my_chemistry, my_units,

a_value,
grid_rank, grid_dimension,
grid_start, grid_end,
density, energy,

10 Chapter 2. Adding Grackle to Your Simulation Code

grackle Documentation, Release 1.0

x_velocity, y_velocity, z_velocity,
HI_density, HII_density, HM_density,
HeI_density, HeII_density, HeIII_density,
H2I_density, H2II_density,
DI_density, DII_density, HDI_density,
e_density, metal_density,
cooling_time) == 0) {

fprintf(stderr, "Error in calculate_cooling_time.\n");
return 0;

}

2.7.3 Calculating the Temperature Field

gr_float *temperature;
temperature = new gr_float[field_size];
if (calculate_temperature(my_chemistry, my_units,

grid_rank, grid_dimension,
density, energy,
HI_density, HII_density, HM_density,
HeI_density, HeII_density, HeIII_density,
H2I_density, H2II_density,
DI_density, DII_density, HDI_density,
e_density, metal_density,
temperature) == 0) {

fprintf(stderr, "Error in calculate_temperature.\n");
return 0;

}

2.7.4 Calculating the Pressure Field

gr_float *pressure;
pressure = new gr_float[field_size];
if (calculate_pressure(my_chemistry, my_units,

grid_rank, grid_dimension,
density, energy,
HI_density, HII_density, HM_density,
HeI_density, HeII_density, HeIII_density,
H2I_density, H2II_density,
DI_density, DII_density, HDI_density,
e_density, metal_density,
pressure) == 0) {

fprintf(stderr, "Error in calculate_pressure.\n");
return 0;

}

2.7.5 Calculating the Gamma Field

gr_float *gamma;
gamma = new gr_float[field_size];
if (calculate_gamma(my_chemistry, my_units,

grid_rank, grid_dimension,
density, energy,
HI_density, HII_density, HM_density,

2.7. Calling the Available Functions 11

grackle Documentation, Release 1.0

HeI_density, HeII_density, HeIII_density,
H2I_density, H2II_density,
DI_density, DII_density, HDI_density,
e_density, metal_density,
gamma) == 0) {

fprintf(stderr, "Error in calculate_gamma.\n");
return 0;

}

2.8 Pure Tabulated Mode

If you only intend to run simulations using the fully tabulated cooling (primordial_chemistry set to 0), then a simplified
set of functions are available. These functions do not require pointers to be given for the field arrays for the chemistry
species densities. See the table_example.C file in the src/example directory for an example.

Note: No simplified function is available for the calculation of the gamma field since gamma is only altered in
Grackle by the presence of H2.

2.8.1 Solve the Cooling

// some timestep (one million years)
gr_float dt = 3.15e7 * 1e6 / my_units.time_units;

if (solve_chemistry(my_chemistry, my_units,
a_value, dt,
grid_rank, grid_dimension,
grid_start, grid_end,
density, energy,
x_velocity, y_velocity, z_velocity,
metal_density) == 0) {

fprintf(stderr, "Error in solve_chemistry.\n");
return 0;

}

2.8.2 Calculating the Cooling Time

gr_float *cooling_time;
cooling_time = new gr_float[field_size];
if (calculate_cooling_time(my_chemistry, my_units,

a_value,
grid_rank, grid_dimension,
grid_start, grid_end,
density, energy,
x_velocity, y_velocity, z_velocity,
metal_density,
cooling_time) == 0) {

fprintf(stderr, "Error in calculate_cooling_time.\n");
return 0;

}

12 Chapter 2. Adding Grackle to Your Simulation Code

grackle Documentation, Release 1.0

2.8.3 Calculating the Temperature Field

gr_float *temperature;
temperature = new gr_float[field_size];
if (calculate_temperature(my_chemistry, my_units,

grid_rank, grid_dimension,
density, energy,
metal_density,
temperature) == 0) {

fprintf(stderr, "Error in calculate_temperature.\n");
return 0;

}

2.8.4 Calculating the Pressure Field

gr_float *pressure;
pressure = new gr_float[field_size];
if (calculate_pressure(my_chemistry, my_units,

grid_rank, grid_dimension,
density, energy,
pressure) == 0) {

fprintf(stderr, "Error in calculate_pressure.\n");
return 0;

}

2.8. Pure Tabulated Mode 13

grackle Documentation, Release 1.0

14 Chapter 2. Adding Grackle to Your Simulation Code

CHAPTER 3

Parameters and Data Files

3.1 Parameters

For all on/off integer flags, 0 is off and 1 is on.

use_grackle (int) Flag to activate the grackle machinery. Default: 0.

with_radiative_cooling (int) Flag to include radiative cooling and actually update the thermal energy during
the chemistry solver. If off, the chemistry species will still be updated. The most common reason to set this to
off is to iterate the chemistry network to an equilibrium state. Default: 1.

primordial_chemistry (int) Flag to control which primordial chemistry network is used. Default: 0.

• 0: no chemistry network. Radiative cooling for primordial species is solved by interpolating from lookup
tables calculated with Cloudy. A simplified set of functions are available (though not required) for use in
this mode. For more information, see Pure Tabulated Mode.

• 1: 6-species atomic H and He. Active species: H, H+, He, He+, ++, e-.

• 2: 9-species network including atomic species above and species for molecular hydrogen formation. This
network includes formation from the H- and H2

+ channels, three-body formation (H+H+H and H+H+H2),
H2 rotational transitions, chemical heating, and collision-induced emission (optional). Active species:
above + H-, H2, H2

+.

• 3: 12-species network include all above plus HD rotation cooling. Active species: above plus D, D+, HD.

Note: In order to make use of the non-equilibrium chemistry network (primordial_chemistry options 1-3),
you must add and advect baryon fields for each of the species used by that particular option.

h2_on_dust (int)

• Flag to enable H2 formation on dust grains, dust cooling, and dust-gas heat transfer follow Omukai (2000).
This assumes that the dust to gas ratio scales with the metallicity. Default: 0.

metal_cooling (int) Flag to enable metal cooling using the Cloudy tables. If enabled, the cooling table to be used
must be specified with the grackle_data_file parameter. Default: 0.

Note: In order to use the metal cooling, you must add and advect a metal density field.

cmb_temperature_floor (int) Flag to enable an effective CMB temperature floor. This is implemented by
subtracting the value of the cooling rate at TCMB from the total cooling rate. Default: 1.

UVbackground (int) Flag to enable a UV background. If enabled, the cooling table to be used must be specified
with the grackle_data_file parameter. Default: 0.

15

http://adsabs.harvard.edu/abs/2000ApJ...534..809O

grackle Documentation, Release 1.0

grackle_data_file (string) Path to the data file containing the metal cooling and UV background tables. De-
fault: “”.

Gamma (float) The ratio of specific heats for an ideal gas. A direct calculation for the molecular component is used if
primordial_chemistry > 1. Default: 5/3.

three_body_rate (int) Flag to control which three-body H2 formation rate is used. 0: Abel, Bryan & Norman
(2002), 1: Palla, Salpeter & Stahler (1983), 2: Cohen & Westberg (1983), 3: Flower & Harris (2007), 4: Glover
(2008). These are discussed in Turk et. al. (2011). Default: 0.

cie_cooling (int) Flag to enable H2 collision-induced emission cooling from Ripamonti & Abel (2004). Default:
0.

h2_optical_depth_approximation (int) Flag to enable H2 cooling attenuation from Ripamonti & Abel
(2004). Default: 0.

photoelectric_heating (int) Flag to enable a spatially uniform heating term approximating photo-electric
heating from dust from Tasker & Bryan (2008). Default: 0.

photoelectric_heating_rate (float) If photoelectric_heating enabled, the heating rate in units of
erg cm-3 s-1. Default: 8.5e-26.

Compton_xray_heating (int) Flag to enable Compton heating from an X-ray background following Madau &
Efstathiou (1999). Default: 0.

LWbackground_intensity (float) Intensity of a constant Lyman-Werner H2 photo-dissociating radiation field
in units of 10-21 erg s-1 cm-2 Hz-1 sr-1. Default: 0.

LWbackground_sawtooth_suppression (int) Flag to enable suppression of Lyman-Werner flux due to
Lyman-series absorption (giving a sawtooth pattern), taken from Haiman & Abel, & Rees (2000). Default:
0.

3.2 Data Files

These files contain the metal heating and cooling rates and the UV background photo-heating and photo-ionization
rates. For all three files, the number density range is -10 < log10 (nH / cm-3) < 4 and the temperature range is 1 < log10
(T / K) < 9. Extrapolation is performed when outside of the data range. All data files are located in the input directory
in the source.

• CloudyData_noUVB.h5 - metal cooling rates for collisional ionization equilibrium.

• CloudyData_UVB=FG2011.h5 - metal heating and cooling rates and UV background rates from the work of
Faucher-Giguere et. al. (2009), updated in 2011. The maxmimum redshift is 10.6. Above that, collisional
ionization equilibrium is assumed.

• CloudyData_UVB=HM2012.h5 - metal heating and cooling rates and UV background rates from the work
of Haardt & Madau (2012). The maximum redshift is 15.13. Above that, collisional ionization equilibrium is
assumed.

16 Chapter 3. Parameters and Data Files

http://adsabs.harvard.edu/abs/2002Sci...295...93A
http://adsabs.harvard.edu/abs/2002Sci...295...93A
http://adsabs.harvard.edu/abs/1983ApJ...271..632P
http://adsabs.harvard.edu/abs/1983JPCRD..12..531C
http://adsabs.harvard.edu/abs/2007MNRAS.377..705F
http://adsabs.harvard.edu/abs/2008AIPC..990...25G
http://adsabs.harvard.edu/abs/2008AIPC..990...25G
http://adsabs.harvard.edu/abs/2011ApJ...726...55T
http://adsabs.harvard.edu/abs/2004MNRAS.348.1019R
http://adsabs.harvard.edu/abs/2004MNRAS.348.1019R
http://adsabs.harvard.edu/abs/2004MNRAS.348.1019R
http://adsabs.harvard.edu/abs/2008ApJ...673..810T
http://adsabs.harvard.edu/abs/1999ApJ...517L...9M
http://adsabs.harvard.edu/abs/1999ApJ...517L...9M
http://adsabs.harvard.edu/abs/2000ApJ...534...11H
http://adsabs.harvard.edu/abs/2009ApJ...703.1416F
http://adsabs.harvard.edu/abs/2012ApJ...746..125H

CHAPTER 4

The Python Examples

These example works with a python wrapper that calls the various library functions. These require Cython to be
installed. The best thing to do is to install the yt analysis toolkit, which includes Cython.

4.1 Installing the Python Wrappers

After building the grackle library, some additional environment variables must be set. Move into the src/python
directory and run the set_libs script and follow the instructions. Then, run python setup.py install to build and install
the python wrappers.

~/grackle $ cd src/python
~/grackle/src/python $./set_libs
Issue the following commands:
export PYTHONPATH=$PYTHONPATH:/grackle/src/python
export LD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/grackle/src/python/../clib
You can also set your LD_LIBRARY_PATH to point to where you installed libgrackle.
~/grackle/src/python $ python setup.py install
running install
running build
running config_cc
[clipped]
running install_clib
customize UnixCCompiler

4.2 Running the Example Scripts

The python examples are located in the src/python/examples directory. Before running them, make sure to copy the
data files from the input directory into this directory.

4.2.1 Cooling Rate Figure Example

This sets up a one-dimensional grid at a constant density with logarithmically spaced temperatures from 10 K to 109

K. Radiative cooling is disabled and the chemistry solver is iterated until the species fractions have converged. The
cooling time is then calculated and used to compute the cooling rate. This script also provides a good example for
setting up cosmological unit systems.

17

http://www.cython.org/
http://yt-project.org

grackle Documentation, Release 1.0

python cooling_rate.py

4.2.2 Free-Fall Collapse Example

This sets up a single grid cell with an initial number density of 1 cm-3. The density increases with time following a
free-fall collapse model. As the density increases, thermal energy is added to model adiabatic compression heating.
This can be useful for testing chemistry networks over a large range in density.

python freefall.py

18 Chapter 4. The Python Examples

grackle Documentation, Release 1.0

4.2.3 Simulation Dataset Example

This provides an example of using the grackle library for calculating chemistry and cooling quantities for a pre-existing
simulation dataset. To run this example, you must have yt installed and must also download the IsolatedGalaxy dataset
from the yt sample data page.

python run_from_yt.py

4.2. Running the Example Scripts 19

http://yt-project.org
http://yt-project.org/data/

grackle Documentation, Release 1.0

20 Chapter 4. The Python Examples

CHAPTER 5

Help

If you have any questions, please join the Grackle Users Google Group. Feel free to post any questions or ideas for
development.

21

https://groups.google.com/forum/#!forum/grackle-cooling-users

grackle Documentation, Release 1.0

22 Chapter 5. Help

CHAPTER 6

Citing grackle

The Grackle library was born out of the chemistry and cooling routines of the Enzo simulation code. As such, all of
those who have contributed to Enzo development, and especially to the chemistry and cooling, have contributed to
the Grackle. There is currently no paper that specifically presents the Grackle library on its own, but the functionality
was fully described in the Enzo method paper. The Grackle was originally designed for the AGORA Project and first
referred to by name in the AGORA method paper.

If you used the Grackle library in your work, please cite it as “the Grackle chemistry and cooling library (The Enzo
Collaboration et al. 2013; Kim, J. et al. 2013).” Also, please add a footnote to https://grackle.readthedocs.org/.

The Enzo Collaboration, Bryan, G. L., Norman, M. L., et al. 2013, arXiv:1307.2265

Kim, J.-h., Abel, T., Agertz, O., et al. 2013, arXiv:1308.2669

23

http://enzo-project.org/
http://adsabs.harvard.edu/abs/2013arXiv1307.2265T
https://sites.google.com/site/santacruzcomparisonproject/
http://adsabs.harvard.edu/abs/2013arXiv1308.2669K
http://adsabs.harvard.edu/abs/2013arXiv1307.2265T
http://adsabs.harvard.edu/abs/2013arXiv1307.2265T
http://adsabs.harvard.edu/abs/2013arXiv1308.2669K
https://grackle.readthedocs.org/

grackle Documentation, Release 1.0

24 Chapter 6. Citing grackle

CHAPTER 7

Search

• search

25

