grackle Documentation
Release 2.2

Mar 31, 2017

Contents

Installation 3
L1 Dependencies v v v v i i e e e e e e e e e e e e e e e e e e e 3
1.2 Downloading e e e e e e e e 3
1.3 Building e e e 3
Running the Test Suite 7
Adding Grackle to Your Simulation Code 9
3.1 Example Executables e e e e e e e 9
3.2 Header Files e e e e e 10
33 DataTypeso e e 10
34 Enabling Output L e e 11
3.5 CodeUNits . . . v v ot e 11
3.6 Chemistry Data e e e e e e e e e 12
3.7 Running withOpenMP e e e e 12
3.8 Creating the Necessary Fields 13
3.9 Calling the Available Functions 14
3.10 Pure Tabulated Mode e e e e e e e e e 16
Parameters and Data Files 19
4.1 Parameters i e 19
42 DataFiles e e e e e e e e e e e e e e 21
API Reference 23
5.1 Functions using structs (best for Cand C++) Lo 23
5.2 Functions without structs (best for Fortran) 29
5.3 Internal Functions e 30
Pygrackle: Running Grackle in Python 33
6.1 Installing Pygrackle e e e e 33
6.2 Running the Example Scripts o . e e e e e e e 34
Help 37
Citing grackle 39
Search 41

grackle Documentation, Release 2.2

Grackle is a chemistry and radiative cooling library for astrophysical simulations with interfaces for C, C++, and
Fortran codes. It is a generalized and trimmed down version of the chemistry network of the Enzo simulation code.
Grackle provides:

* two options for primordial chemistry and cooling:

1. non-equilibrium primordial chemistry network for atomic H, D, and He as well as H, and HD, including
H; formation on dust grains.

2. tabulated H and He cooling rates calculated with the photo-ionization code, Cloudy.
* tabulated metal cooling rates calculated with Cloudy.
* photo-heating and photo-ionization from two UV backgrounds:

1. Faucher-Giguere et al. (2009).

2. Haardt & Madau (2012).

The Grackle provides functions to update chemistry species; solve radiative cooling and update internal energy; and
calculate cooling time, temperature, pressure, and ratio of specific heats (gamma).

Contents:

Contents 1

http://enzo-project.org
http://nublado.org
http://nublado.org
http://adsabs.harvard.edu/abs/2009ApJ...703.1416F
http://adsabs.harvard.edu/abs/2012ApJ...746..125H

grackle Documentation, Release 2.2

2 Contents

CHAPTER 1

Installation

The compilation process for grackle is very similar to that for Enzo. For more details on the Enzo build system, see
the Enzo build documentation.

Dependencies

In addition to C/C++ and Fortran compilers, the following dependency must also be installed:

e HDF5, the hierarchical data format. HDFS5 also may require the szip and zlib libraries, which can be found at
the HDF5 website. Compiling with HDFS 1.8 or greater requires that the compiler directive H5_USE_16_API
be specified. This can be done with ~-DH5_USE_16_APT, which is in the machine specific make files.

Downloading

Grackle is available in a mercurial repository here. The mercurial site is here and an excellent tutorial can be found
here. With mercurial installed, grackle can be obtained with the following command:

~ $ hg clone https://bitbucket.org/grackle/grackle

Building

1. Initialize the build system.

~ $ cd grackle
~/grackle $./configure

2. Proceed to the source directory.

http://enzo-project.org
https://enzo.readthedocs.org/en/latest/tutorials/building_enzo.html
http://www.hdfgroup.org/HDF5/
https://bitbucket.org/grackle/grackle
http://mercurial.selenic.com/
http://hginit.com/

grackle Documentation, Release 2.2

~/grackle $ cd src/clib

3. Configure the build system.

Note: As of version 2.1, Grackle uses 1 ibt ool for building and installation. As such, both shared and static libraries
will be built automatically and it is not necessary to add the -fPIC compiler flag.

Compile settings for different systems are stored in files starting with “Make.mach” in the source directory. Grackle
comes with three sample make macros: Make .mach.darwin for Mac OSX, Make .mach.linux—gnu for Linux
systems, and an unformatted Make .mach .unknown. If you have a make file prepared for an Enzo install, it cannot
be used straight away, but is a very good place to start.

Once you have chosen the make file to be used, a few variables should be set:

e MACH_LIBTOOL - pathto 1ibtool executable. Note, on a Mac, this should point to glibtool, which can
be installed with macports or homebrew.

e LOCAL_HDF5_INSTALL - path to your hdf5 installation.
e LOCAL_FC_INSTALL - path to Fortran compilers (not including the bin subdirectory).
e MACH_INSTALL_ PREFIX - path where grackle header and library files will be installed.

e MACH_INSTALL_LIB_DIR - path where libgrackle will be installed (only set if different from
MACH_INSTALL_PREFIX/lib).

* MACH_INSTALL_INCLUDE_DIR - path where grackle header files will be installed (only set if different from
MACH_INSTALL_PREFIX/include).

Once the proper variables are set, they are loaded into the build system by doing the following:

~/grackle/src/clib $ make machine-<system>

Where system refers to the make file you have chosen. For example, if you chose Make .mach.darwin, type:

~/grackle/src/clib $ make machine-darwin

Custom make files can be saved and loaded from a .grackle directory in the home directory.

Compiler Settings

There are three compile options available for setting the precision of baryon fields, compiler optimization, and enabling
OpenMP. To see them, type:

~/grackle/src/clib $ make show-config

MACHINE: Darwin (OSX)
MACHINE-NAME: darwin

CONFIG_PRECISION |[precision—-{32,64}] : 64
CONFIG_OPT [opt-{warn,debug,high, aggressive}] : high
CONFIG_OMP [omp—{on,o0ff}] . off

For example, to change the optimization to high, type:

~/grackle/src/clib $ make opt-high

4 Chapter 1. Installation

grackle Documentation, Release 2.2

Custom settings can be saved for later use by typing:

~/grackle/src/clib $ make save-config-<keyword>

They will be saved in the .grackle directory in your home directory. To reload them, type:

~/grackle/src/clib $ make load-config-<keyword>

For a list of all available make commands, type:

~/grackle/src/clib $ make help

Grackle Makefile Help

make
make
make
make
make

make
make

make
make
make
make

install
help
clean
dep

show-version
show-diff

help-config
show-config
show—-flags
default

Compile and generate librackle

Copy the library somewhere

Display this help information

Remove object files, executable, etc.
Create make dependencies in DEPEND file

Display revision control system branch and revision
Display local file modifications

Display detailed help on configuration make targets
Display the configuration settings

Display specific compilation flags

Reset the configuration to the default wvalues

4. Compile and Install

To build the code, type:

~/grackle/src/clib $ make
Updating DEPEND

Compiling calc_rates.F

Compiling coolld_multi.F

Linking

Success!

Then, to install:

~/grackle/src/clib $ make install

5. Test your Installation

Once installed, you can test your installation with the provided example to assure it is functioning correctly. If some-
thing goes wrong in this process, check the out . compile file to see what went wrong during compilation, or use
1dd (otool -L on Mac) on your executable to determine what went wrong during linking.

~/grackle/src/clib $ cd

../example

~/grackle/src/example $ make clean
~/grackle/src/example $ make

Compiling cxx_example.C

Linking

1.3. Building

grackle Documentation, Release 2.2

Success!
~/grackle/src/example $./cxx_example

The Grackle Version 2.2
Mercurial Branch default
Mercurial Revision b4650914153d

Initializing grackle data.

with_radiative_cooling: 1.

primordial_chemistry: 3.

metal_cooling: 1.

UVbackground: 1.

Initializing Cloudy cooling: Metals.

cloudy_table_file: ../../input/CloudyData_UVB=HM2012.h5.
Cloudy cooling grid rank: 3.

Cloudy cooling grid dimensions: 29 26 161.

Parameterl: -10 to 4 (29 steps).

Parameter2: 0 to 14.849 (26 steps).

Temperature: 1 to 9 (161 steps).

Reading Cloudy Cooling dataset.

Reading Cloudy Heating dataset.

Initializing UV background.

Reading UV background data from ../../input/CloudyData_UVB=HM2012.h5.
UV background information:

Haardt & Madau (2012, Apd, 746, 125) [Galaxies & Quasars]
z_min = 0.000

z max = 15.130

Setting UVbackground_redshift_on to 15.130000.

Setting UVbackground_redshift_off to 0.000000.

Cooling time = -1.434987e+13 s.

Temperature = 4.637034e+02 K.

Pressure = 3.345738e+34.

gamma = 1.666645e+00.

In order to verify that Grackle is fully functional, try running the test suite.

6 Chapter 1. Installation

CHAPTER 2

Running the Test Suite

Grackle contains a number of unit and answer tests to verify that everything is working properly. These will verify
that:

e proper and comoving unit systems are consistent

* atomic, primordial collisional ionization equilibrium agrees with the analytical solution
* all code examples build and run

* all python examples run and give correct results

* all Python code conforms to PEP 8

Once you have installed pygrackle, the tests can be run from the sre directory by typing make test:

~ $ cd grackle/src
~/grackle/src $ make test

or from the sre/python directory by typing py . test:

~ $ cd grackle/src/python
~/grackle/src $ py.test

===================================== test session starts,

platform darwin -- Python 2.7.11, pytest-2.8.1, py-1.4.30, pluggy-0.3.1

rootdir: /Users/britton/Documents/work/simulation/grackle/grackle/src/python, inifile:
collected 13 items

tests/test_chemistry.py
tests/test_examples.py
tests/test_flake8.py
tests/test_primordial.py

seconds,,

https://www.python.org/dev/peps/pep-0008/

grackle Documentation, Release 2.2

Now it’s time to integrate grackle into your simulation code.

8 Chapter 2. Running the Test Suite

CHAPTER 3

Adding Grackle to Your Simulation Code

This document follows the example files, cxx_example.C and cxx_table_example.C. For a list of all available func-

tions,

see the API Reference.

Example Executables

The grackle source code contains examples for C, C++, and Fortran codes. They are located in the src/example
directory and detail different uses of the grackle library.

c_example.c - full functionality C example that uses the units and chemistry data structures.

c_table_example.c - tabulated cooling only (no chemistry) C example that uses the units and chemistry data
structures.

c_example_nostruct.c - full functionality C example that uses the initialize_grackle_ () function
instead of data structures.

c_table_example_nostruct.c - tabulated cooling only (no chemistry) C example that uses the
initialize_grackle_ () function instead of data structures.

cxx_example.C - full functionality C++ example that uses the units and chemistry data structures.

cxx_table_example.C - tabulated cooling only (no chemistry) C++ example that uses the units and chemistry
data structures.

cxx_omp_example.C - C++ example using both the non-equilibrium and tabulated solvers wth OpenMP. Run
the executable with the -h flag to see a full list of options.

fortran_example.F - full functionality Fortran example that uses the initialize_grackle_ () function.

fortran_table_example.F - tabulated cooling only (no chemistry) Fortran example that uses the
initialize_grackle_ () function.

Once you have already installed the grackle library, you can build the examples by typing make and the name of the
file without extension. For example, to build the C++ example, type:

grackle Documentation, Release 2.2

$ make cxx_example

To run the example, make sure to add the path to the directory containing the installed libgrackle.so to your
LD_LIBRARY_PATH (or DYLD_LIBRARY_PATH on Mac).

This document follows cxx_example.C, which details the use of the full-featured grackle functions. The table ex-
amples illustrate the use of the Grackle with fully tabulated cooling functions only. In this mode, a simplified set of
functions are available. For information on these, see Pure Tabulated Mode.

Header Files

Six header files are installed with the grackle library. They are:

* grackle.h - the primary header file, containing declarations for all the available functions and data structures.
This is the only header file that needs to be included for C and C++ codes.

* grackle_types.h - defines the variable type gr._float to be used for the baryon fields passed to the grackle
functions. This can be either a 4 or 8 byte float, allowing the code to be easily configured for either single or
double precision baryon fields.

¢ grackle_fortran_types.def - similar to grackle_types.h, but used with Fortran codes. This defines the variable
type R_PREC as either real*4 or real*8.

* grackle_macros.h - contains some macros used internally.

¢ chemistry_data.h - defines the primary data structure which all run time parameters as well as the chemistry,
cooling, and UV background data.

* code_units.h - defines the structure containing conversions from code units to CGS.

The only source file that needs to be included in your simulation code is grackle.h. Since this is a C++ example and
the Grackle is pure C, we must surround the include with the ‘extern “C”” directive.

extern "C" {
#include <grackle.h>

}

Data Types

The grackle library provides a configurable variable type to control the precision of the baryon fields passed to the
grackle functions. For C and C++ codes, this is gr._f1oat. For Fortran codes, this is R_PREC. The precision of
these types can be configured with the precision compile option. Compile with precision-32 to make gr._float and
R_PREC a4 byte float (float for C/C++ and real*4 for Fortran). Compile with precision-64 to make gr_float and
R_PREC an 8 byte float (double for C/C++ and real*8 for Fortran).

gr_float
Floating point type used for the baryon fields. This is of type float if compiled with precision-32 and type double
if compiled with precision-64.

R_PREC
The Fortran analog of gr._float. This is of type real*4 if compiled with precision-32 and type real*8 if
compiled with precision-64.

10 Chapter 3. Adding Grackle to Your Simulation Code

grackle Documentation, Release 2.2

Enabling Output

By default, grackle will not print anything but error messages. However, a short summary of the running configuration
can be printed by setting grackle_verbose to 1.

// Enable output
grackle_verbose = 1;

Code Units

It is strongly recommended to use comoving coordinates with any cosmological simulation. The code_units
structure contains conversions from code units to CGS. If comoving coordinates is set to 0, it is assumed that
the fields passed into the solver are in the proper frame. All of the units (density, length, time, velocity, and expansion
factor) must be set. When using the proper frame, a_ unit s (units for the expansion factor) must be set to 1.0.

code_units
This structure contains the following members.

int comoving coordinates
If set to 1, the incoming field data is assumed to be in the comoving frame. If set to 0, the incoming field data is
assumed to be in the proper frame.

double density_units
Conversion factor to be multiplied by density fields to return densities in proper g/cm?.

double length_units
Conversion factor to be multiplied by length variables to return lengths in proper cm.

double time_units
Conversion factor to be multiplied by time variables to return times in s.

double velocity units
Conversion factor to be multiplied by velocities to return proper cm/s.

double a_units
Conversion factor to be multiplied by the expansion factor such that ayye = acode* a_units.

code_units my_units;

my_units.comoving_coordinates = 0; // 1 if cosmological sim, 0 1f not
my_units.density_units = 1.67e-24; // 1 m_H/cc

my_units.length_units = 3.086e21; // 1 kpc

my_units.time_units = 3.15569el13; // 1 Myr

my_units.velocity_units = my_units.length_units / my_units.time_units;
my_units.a_units = 1.0; // units for the expansion factor

If comoving coordinatesissetto 1, itis assumed that the fields being passed to the solver are in the comoving
frame. Hence, the units must convert from code units in the comoving frame to CGS in the proper frame.

Note: With comoving_coordinate setto 1, velocity units need to be defined in the following way.

my_units.velocity_units = my_units.a_units =*
(my_units.length_units / a_value) / my_units.time_units; // since u = a * dx/dt

For an example of using comoving units, see the units system in the Enzo code. For cosmological simualations, a
comoving unit system is preferred, though not required, since it allows the densities to stay close to 1.0.

3.4. Enabling Output 11

http://enzo-project.org/

grackle Documentation, Release 2.2

Chemistry Data

The main Grackle header file contains a structure of type chemistry data called grackle_data, which con-
tains all of the parameters that control the behavior of the solver as well as all of the actual chemistry and cooling
rate data. The routine, set_default_chemistry_parameters () is responsible for the initial setup of this
structure and for setting of all the default parameter values. The parameters can then be set to their desired values.
See Parameters and Data Files for a full list of the available parameters. The function will return an integer indicating
success (1) or failure (0).

chemistry data
This structure holds all grackle run time parameter and all chemistry and cooling data arrays.

if (set_default_chemistry_parameters() == 0) {
fprintf (stderr, "Error in set_default_chemistry_parameters.\n");

// Set parameter values for chemistry.

grackle_data.use_grackle = 1; // chemistry on
grackle_data.with_radiative_cooling = 1; // cooling on
grackle_data.primordial_chemistry = 3; // molecular network with H, He, D
grackle_data.metal_cooling = 1; // metal cooling on
grackle_data.UVbackground = 1; // UV background on
grackle_data.grackle_data_file = "CloudyData_ UVB=HM2012.h5"; // data file

Once the desired parameters have been set, the chemistry and cooling rates must be initialized with the
initialize_chemistry_data (). This function also requires the initial value of the expansion factor for set-
ting internal units. If the simulation is not cosmological, the expansion factor should be set to 1. The initializing
function will return an integer indicating success (1) or failure (0).

// Set initial expansion factor (for internal units).

// Set expansion factor to 1 for non-cosmological simulation.
double initial_redshift = 100.;

double a_value = 1. / (1. + initial_redshift) / my_units.a_units;

// Finally, initialize the chemistry object.

if (initialize_chemistry_data(&my_units, a_value) == 0) {
fprintf (stderr, "Error in initialize_chemistry_data.\n");
return 0O;

The Grackle is now ready to be used.

Running with OpenMP

As of version 2.2, Grackle can be run with OpenMP parallelism. To do this, the library must first be compiled with
OpenMP support enabled by issuing the command, “make omp-on”, before compiling. See Compiler Settings for
more information on how to change settings.

For an example of how to compile your code with OpenMP, see the cxx_table_example.C code example (Example
Executables). Once your code has been compiled with OpenMP enabled, the number of threads used can be controlled
by setting the omp_ nt hreads parameter, stored in the grackle_data struct.

// 8 threads per process
grackle_data.omp_nthreads = 8;

12 Chapter 3. Adding Grackle to Your Simulation Code

grackle Documentation, Release 2.2

If not set, this parameter will be set to the maximum number of threads possible, as determined by the system or as
configured by setting the OMP_NUM_THREADS environment variable.

Creating the Necessary Fields

With the code _unitsand chemistry data structures ready, the only thing left is to create the arrays to carry
the species densities. Pointers for all fields must be created, but the arrays only need to be allocated if the fields are
going to be used by the chemistry network. Variables containing the dimensionality of the data, the active dimensions
(not including the ghost zones), and the starting and ending indices for each dimensions must also be created.

// Allocate field arrays.
gr_float xdensity, =energy,
«*HI_density, *HII_density,

*x_velocity,
*HM_density,

xy_velocity, =*z_velocity,

«HeI_density,
*H2I_density,
«DI_density,
~e_density,

«HeII_density,
«H2II_density,
*DII_density,

+metal_density;

«HeIII_density,

*HDI_density,

// Set grid dimension and size.

// grid_start and grid_end are used to ignore ghost zones.

int field_size 10;

int grid_rank = 3;

// If grid rank is less than 3, set the other dimensions to 1 and
// start indices and end indices to 0.

int grid_dimension([3],

grid_start[3],

grid_end([3];

for

(int 1 = 0;1i < 3;1i++) |

grid_dimension[i] = 1; // the active dimension not including ghost zones.
grid_start[i] = 0;
grid_end[i] = 0;

}

grid_dimension[0] = field_size;

grid_end[0] = field_size - 1;

density = new gr_float[field_size];

energy = new gr_float[field_sizel;

x_velocity = new [;
[

y_velocity
z_velocity

new
new

gr_float[field_size

]
1
gr_float[field_size]
]
gr_float[field_size]

// for primordial_chemistry >= 1

HI_density
HII_density
HeI_density
HeII_density
HeIII_density
e_density

new
new
new
new
new
new

gr_float[field_size
gr_float[field_size
gr_float[field_size
gr_float[field_size
gr_float[field_size
[

]
1
]
]
1
gr_float[field_size]

’

’

’

’

’

4

’

’

// for primordial_ chemistry >= 2

HM_density
H2I_density
H2II_density

new gr_float[field_size];
new gr_float[field_size];
new gr_float[field_size];

// for primordial_chemistry >= 3

DI_density
DII_density
HDI_density

new gr_float[field_size];
new gr_float[field_size];
new gr_float[field_size];

// for metal_cooling
metal_density

new gr_

1
float [field_size];

3.8. Creating the Necessary Fields

grackle Documentation, Release 2.2

Note: The electron mass density should be scaled by the ratio of the proton mass to the electron mass such that the

electron density in the code is the electron number density times the proton mass.

Calling the Available Functions

There are five functions available, one to solve the chemistry and cooling and four others to calculate the cooling time,
temperature, pressure, and the ratio of the specific heats (gamma). The arguments required are the code_units
structure, the value of the expansion factor, the field size and dimension variables, and the field arrays themselves. For
the chemistry solving routine, a timestep must also be given. For the four field calculator routines, the array to be filled

with the field values must be created and passed as an argument as well.

Solve the Chemistry and Cooling

// some timestep (one million years)
double dt = 3.15e7 % le6 / my_units.time_units;

if (solve_chemistry (&émy_units, a_value, dt,

grid_rank, grid_dimension,
grid_start, grid_end,
density, energy,
x_velocity, y_velocity, z_velocity,
HI_density, HII_density, HM_density,
HeI_density, HeII_density, HeIII_density,
H2I_density, H2II_density,
DI_density, DII_density, HDI_density,
e_density, metal_density) == 0) {

fprintf (stderr, "Error in solve_chemistry.\n");

return 0;

Calculating the Cooling Time

gr_float xcooling_time;
cooling_time = new gr_float[field_size];
if (calculate_cooling_time (&émy_units, a_value,
grid_rank, grid_dimension,
grid_start, grid_end,
density, energy,
x_velocity, y_velocity, z_velocity,
HI_density, HII_density, HM_density,
HeI_density, HeII_density, HeIII_density,
H2I_density, H2II_density,
DI_density, DII_density, HDI_density,
e_density, metal_density,
cooling_time) == 0) {
fprintf (stderr, "Error in calculate_cooling_time.\n");
return 0;

14 Chapter 3. Adding Grackle to Your Simulation Code

grackle Documentation, Release 2.2

Calculating the Temperature Field

gr_float xtemperature;
temperature = new gr_float[field_size];
if (calculate_temperature (émy_units, a_value,
grid_rank, grid_dimension,
grid_start, grid_end,
density, energy,
HI_density, HII_density, HM_density,
HeI_density, HeII_density, HeIII_density,
H2I_density, H2II_density,
DI_density, DII_density, HDI_density,
e_density, metal_density,
temperature) == 0) {
fprintf (stderr, "Error in calculate_temperature.\n");
return 0;

Calculating the Pressure Field

gr_float *pressure;
pressure = new gr_float[field_size];
if (calculate_pressure (&émy_units, a_value,
grid_rank, grid_dimension,
grid_start, grid_end,
density, energy,
HI_density, HII_density, HM_density,
HeI_density, HeII_density, HeIII_density,
H2I_density, H2II_density,
DI_density, DII_density, HDI_density,
e_density, metal_density,
pressure) == 0) {
fprintf (stderr, "Error in calculate_pressure.\n");
return 0O;

Calculating the Gamma Field

gr_float xgamma;
gamma = new gr_float[field_size];
if (calculate_gamma (&émy_units, a_value,
grid_rank, grid_dimension,
grid_start, grid_end,
density, energy,
HI_density, HII_density, HM_density,
HeI_density, HeII_density, HeIII_density,
H2I_density, H2II_density,
DI_density, DII_density, HDI_density,
e_density, metal_density,
gamma) == 0) {
fprintf (stderr, "Error in calculate_gamma.\n");
return O;

3.9. Calling the Available Functions

15

grackle Documentation, Release 2.2

Pure Tabulated Mode

If you only intend to run simulations using the fully tabulated cooling (primordial chemistry setto 0), then a
simplified set of functions are available. These functions do not require pointers to be given for the field arrays for the
chemistry species densities. See the cxx_table_example.C, c_table_example.c, c_table_example_nostruct.c, and
fortran_table_example.F files in the src/example directory for examples.

Note: No simplified function is available for the calculation of the gamma field since gamma is only altered in
Grackle by the presence of H,.

Solve the Cooling

// some timestep (one million years)
double dt = 3.15e7 % le6 / my_units.time_units;

if (solve_chemistry_table (&émy_units, a_value, dt,

grid_rank, grid_dimension,
grid_start, grid_end,
density, energy,
x_velocity, y_velocity, z_velocity,
metal_density) == 0) {

fprintf (stderr, "Error in solve_chemistry.\n");

return 0;

Calculating the Cooling Time

gr_float *cooling_time;
cooling_time = new gr_float[field_size];
if (calculate_cooling_time_table (émy_units, a_value,
grid_rank, grid_dimension,
grid_start, grid_end,
density, energy,
x_velocity, y_velocity, z_velocity,
metal_density,
cooling_time) == 0) {
fprintf (stderr, "Error in calculate_cooling_time.\n");
return 0O;

Calculating the Temperature Field

gr_float *temperature;

temperature = new gr_float[field_size];

if (calculate_temperature_table (&émy_units, a_value,
grid_rank, grid_dimension,
grid_start, grid_end,
density, energy,
metal_density,
temperature) == 0) {

16 Chapter 3. Adding Grackle to Your Simulation Code

grackle Documentation, Release 2.2

fprintf (stderr, "Error in calculate_temperature.\n");

return 0;

Calculating the Pressure Field

gr_float *pressure;

pressure = new gr_float[field_size];

if (calculate_pressure_table (&my_units, a_value,
grid_rank, grid_dimension,
grid_start, grid_end,
density, energy,
pressure) == 0) {

fprintf (stderr, "Error in calculate_pressure.\n");

return 0O;

3.10. Pure Tabulated Mode

17

grackle Documentation, Release 2.2

18 Chapter 3. Adding Grackle to Your Simulation Code

CHAPTER 4

Parameters and Data Files

Parameters

For all on/off integer flags, O is off and 1 is on.

int use_grackle
Flag to activate the grackle machinery. Default: 0.

intwith_radiative_cooling
Flag to include radiative cooling and actually update the thermal energy during the chemistry solver. If off, the
chemistry species will still be updated. The most common reason to set this to off is to iterate the chemistry
network to an equilibrium state. Default: 1.

int primordial_ chemistry
Flag to control which primordial chemistry network is used. Default: 0.

*0: no chemistry network. Radiative cooling for primordial species is solved by interpolating from lookup
tables calculated with Cloudy. A simplified set of functions are available (though not required) for use in
this mode. For more information, see Pure Tabulated Mode.

1: 6-species atomic H and He. Active species: H, H, He, He*, **, e".

*2: 9-species network including atomic species above and species for molecular hydrogen formation. This
network includes formation from the H™ and H,™ channels, three-body formation (H+H+H and H+H+H,),
H, rotational transitions, chemical heating, and collision-induced emission (optional). Active species:
above + H", H,, H,™".

3: 12-species network include all above plus HD rotation cooling. Active species: above + D, D, HD.

Note: In order to make use of the non-equilibrium chemistry network (primordial_chemistry options 1-3),
you must add and advect baryon fields for each of the species used by that particular option.

inth2 _on_dust
Flag to enable H, formation on dust grains, dust cooling, and dust-gas heat transfer follow Omukai (2000). This
assumes that the dust to gas ratio scales with the metallicity. Default: 0.

19

http://adsabs.harvard.edu/abs/2000ApJ...534..809O

grackle Documentation, Release 2.2

intmetal_cooling
Flag to enable metal cooling using the Cloudy tables. If enabled, the cooling table to be used must be specified
with the grackle data_file parameter. Default: 0.

Note: In order to use the metal cooling, you must add and advect a metal density field.

int cmb_temperature_floor
Flag to enable an effective CMB temperature floor. This is implemented by subtracting the value of the cooling
rate at Tcyg from the total cooling rate. Default: 1.

int UVbackground
Flag to enable a UV background. If enabled, the cooling table to be used must be specified with the
grackle_data_ file parameter. Default: 0.

char* grackle_data_file
Path to the data file containing the metal cooling and UV background tables. Default: “”.

float Gamma
The ratio of specific heats for an ideal gas. A direct calculation for the molecular component is used if
primordial_ chemistry > 1. Default: 5/3.

int three_body_rate
Flag to control which three-body H, formation rate is used.

*(0: Abel, Bryan & Norman (2002)
*1: Palla, Salpeter & Stahler (1983)
*2: Cohen & Westberg (1983)
*3: Flower & Harris (2007)
*4: Glover (2008)
*5: Forrey (2013).
The first five options are discussed in Turk et. al. (2011). Default: 0.

int cie_cooling
Flag to enable H; collision-induced emission cooling from Ripamonti & Abel (2004). Default: 0.

inth2_optical_depth_approximation
Flag to enable H; cooling attenuation from Ripamonti & Abel (2004). Default: 0.

int photoelectric_heating
Flag to enable a spatially uniform heating term approximating photo-electric heating from dust from Tasker &
Bryan (2008). Default: 0.

int photoelectric_heating_ rate
If photoelectric_heating enabled, the heating rate in units of erg cm™ s™'. Default: 8.5e-26.

int Compton_xray_heating
Flag to enable Compton heating from an X-ray background following Madau & Efstathiou (1999). Default: 0.

float LWwbackground_intensity
Intensity of a constant Lyman-Werner H, photo-dissociating radiation field in units of 10"?' erg s' cm™ Hz!
sr'l. Default: 0.

int LWbackground_sawtooth_suppression
Flag to enable suppression of Lyman-Werner flux due to Lyman-series absorption (giving a sawtooth pattern),
taken from Haiman & Abel, & Rees (2000). Default: 0.

20 Chapter 4. Parameters and Data Files

http://adsabs.harvard.edu/abs/2002Sci...295...93A
http://adsabs.harvard.edu/abs/1983ApJ...271..632P
http://adsabs.harvard.edu/abs/1983JPCRD..12..531C
http://adsabs.harvard.edu/abs/2007MNRAS.377..705F
http://adsabs.harvard.edu/abs/2008AIPC..990...25G
http://adsabs.harvard.edu/abs/2013ApJ...773L..25F
http://adsabs.harvard.edu/abs/2011ApJ...726...55T
http://adsabs.harvard.edu/abs/2004MNRAS.348.1019R
http://adsabs.harvard.edu/abs/2004MNRAS.348.1019R
http://adsabs.harvard.edu/abs/2008ApJ...673..810T
http://adsabs.harvard.edu/abs/2008ApJ...673..810T
http://adsabs.harvard.edu/abs/1999ApJ...517L...9M
http://adsabs.harvard.edu/abs/2000ApJ...534...11H

grackle Documentation, Release 2.2

int omp_nthreads
Sets the number of OpenMP threads. If not set, this will be set to the maximum number of threads possible,
as determined by the system or as configured by setting the OMP_ NUM_ THREADS environment variable. Note,
Grackle must be compiled with OpenMP support enabled. See Running with OpenMP.

Data Files

All data files are located in the input directory in the source.

The first three files contain the heating and cooling rates for both primordial and metal species as well as the UV
background photo-heating and photo-ionization rates. For all three files, the valid density and temperature range is
given below. Extrapolation is performed when outside of the data range. The metal cooling rates are stored for solar
metallicity and scaled linearly with the metallicity of the gas.

Valid range:
* number density: -10 < log;o (ng / cm?) <4
* temperature: the temperature range is 1 <logjo (T /K) <9.
Data files:
* CloudyData_noUVB.hS5 - cooling rates for collisional ionization equilibrium.

* CloudyData_UVB=FG2011.hS - heating and cooling rates and UV background rates from the work of Faucher-
Giguere et. al. (2009), updated in 2011. The maxmimum redshift is 10.6. Above that, collisional ionization
equilibrium is assumed.

* CloudyData_UVB=HM2012.h5 - heating and cooling rates and UV background rates from the work of Haardt
& Madau (2012). The maximum redshift is 15.13. Above that, collisional ionization equilibrium is assumed.

The final file includes only metal cooling rates under collisional ionization equilibrium, i.e., no incident radiation field.
This table extends to higher densities and also varies in metallicity rather than scaling proportional to the solar value.
This captures the thermalization of metal coolants occuring at high densities, making this table more appropriate for
simulations of collapsing gas-clouds.

Valid range:

* number density: -6 < logo (nyg / cm3) < 12

» metallicity: -6 <logjg (Z/ Zg) < 1

* temperature: the temperature range is 1 <logjo (T / K) < 8.
Data file:

¢ cloudy_metals_2008_3D.hS - collisional ionization equilibrium, metal cooling rates only.

4.2. Data Files 21

http://adsabs.harvard.edu/abs/2009ApJ...703.1416F
http://adsabs.harvard.edu/abs/2009ApJ...703.1416F
http://adsabs.harvard.edu/abs/2012ApJ...746..125H
http://adsabs.harvard.edu/abs/2012ApJ...746..125H

grackle Documentation, Release 2.2

22 Chapter 4. Parameters and Data Files

CHAPTER B

API Reference

The Grackle has a few different versions of the various functions for solving the chemistry and cooling and calculating
related fields. One set of functions requires the user to work with C structs, while the other does not. The set that does
not use structs is simpler to implement in Fortran codes. Both of these rely internally on a chemistry_data type struct
called grackle_data, which exists in the grackle namespace. A third set of functions also exists that requires the
user to hold and pass their own chemistry_data struct.

Functions using structs (best for C and C++)

These functions require the user to directly access the grackle_data data structure to set parameters and to
creata a code_units struct to control the unit system. These functions are used in the examples, ¢_example.c,
c_table_example.c, cxx_example.C, and cxx_table_example.C.

int set_default_chemistry_ parameters();
Initializes the grackle_data data structure. This must be called before run time parameters can be set.

Return type int
Returns 1 (success) or O (failure)

int initialize_chemistry_data(code_units *my_units, double a_value);
Loads all chemistry and cooling data, given the set run time parameters. This can only be called after
set_default_chemistry_parameters().

Parameters

* my_units (code_unitsx)— code units conversions

* a_value (double) — the expansion factor in code units (a_code = a / a_units)
Return type int
Returns 1 (success) or O (failure)

int solve_chemistry(code_units *my units, double a_value, double dt_value, int grid_rank,
Evolves the species densities and internal energies over a given timestep by solving the chemistry and cooling
rate equations.

23

grackle Documentation, Release 2.2

Parameters
* my units (code_units«)—code units conversions
* a_value (double) — the expansion factor in code units (a_code = a/ a_units)
* dt_value (double) — the integration timestep in code units
* grid_rank (int) - the dimensionality of the grid
* grid _dimension (int #) — array holding the size of the baryon field in each dimension

* grid_start (int #) — array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

* grid_end (int*) — array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

* density (gr_float «) — array containing the density values in code units

* internal_energy (gr_float «)— array containing the specific internal energy values
in code units corresponding to erg/g

* x_velocity (gr_float«)— array containing the x velocity values in code units
* y_velocity (gr_float«)— array containing the y velocity values in code units
* z_velocity (gr_float«)— array containing the z velocity values in code units

* HI density (gr_float~) — array containing the HI densities in code units equivalent
those of the density array. Used with primordial_ chemistry >=1.

* HII density (gr_float«)—array containing the HII densities in code units equivalent
those of the density array. Used with primordial_chemistry >=1.

* HM density (gr_float*) — array containing the H™ densities in code units equivalent
those of the density array. Used with primordial_chemistry >=2.

* HeI_density (gr_floatx)—array containing the Hel densities in code units equivalent
those of the density array. Used with primordial_chemistry >=1.

* HeII_density (gr_float«)—array containing the Hell densities in code units equiv-
alent those of the density array. Used with primordial_chemistry >=1.

* HeIII density (gr_float*) — array containing the Helll densities in code units
equivalent those of the density array. Used with primordial_chemistry >=1.

* H2I_density(gr_float«)—array containing the H,: densities in code units equivalent
those of the density array. Used with primordial_chemistry >=2.

* H2II density (gr_float«)— array containing the Hp*densities in code units equiva-
lent those of the density array. Used with primordial_chemistry >=2.

* DI_density (gr_float«)— array containing the DI (deuterium) densities in code units
equivalent those of the density array. Used with primordial_chemistry =3.

* DII_density (gr_float«)—array containing the DII densities in code units equivalent
those of the density array. Used with primordial_ chemistry =3.

* HDI_density (gr_float x)—array containing the HD densities in code units equivalent
those of the density array. Used with primordial_ chemistry =3.

* e_density (gr_float«) — array containing the e densities in code units equivalent
those of the density array but normalized to the ratio of the proton to electron mass. Used
with primordial_ chemistry >=1.

24 Chapter 5. API Reference

grackle Documentation, Release 2.2

metal_density (gr_floatx) — array containing the metal densities in code units
equivalent those of the density array. Used with metal_cooling=1.

Return type int

Returns 1 (success) or O (failure)

int calculate_cooling time (code_units *my_ units, double a_value, int grid_rank,

Calculates the instantaneous cooling time.

Parameters

my_units (code_units«) - code units conversions

a_value (double) — the expansion factor in code units (a_code = a / a_units)
grid_rank (int) - the dimensionality of the grid

grid _dimension (int #) — array holding the size of the baryon field in each dimension

grid_start (int #) — array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

grid_end (int) — array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

density (gr_float «)— array containing the density values in code units

internal_energy (gr_float*)— array containing the specific internal energy values
in code units corresponding to erg/g

x_velocity, y_velocity, z_velocity (gr_floatx) — arrays containing the
X, y, and z velocity values in code units

HI_density, HII_density, HM density, HeI_density,
HeII_density, HeIII_density, H2I_density, H2II_density,
DI_density, DII _density, HDI_density, e_density,

metal density (gr_floatx) — arrays containing the species densities in code
units equivalent those of the density array

cooling_time (gr_float) — array which will be filled with the calculated cooling
time values

Return type int

Returns 1 (success) or O (failure)

int *grid_ ¢

int calculate_gamma (code_units *my_ units, double a_value, int grid_rank, int xgrid_dimensi
Calculates the effective adiabatic index. This is only useful with primordial chemistry >=2 as the only
thing that alters gamma from the single value is H,.

Parameters

my_units (code_units«) —code units conversions

a_value (double) — the expansion factor in code units (a_code = a / a_units)
grid_rank (int) - the dimensionality of the grid

grid_dimension (int #) — array holding the size of the baryon field in each dimension

grid_start (int #) — array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

grid_end (int x) — array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

5.1. Functions using structs (best for C and C++)

25

grackle Documentation, Release 2.2

density (gr_float «)— array containing the density values in code units

internal_energy (gr_float*)— array containing the specific internal energy values
in code units corresponding to erg/g

HI_density, HII_density, HM density, HeI_density,
HeII_density, HeIII_density, H2I_density, H2II_density,
DI_density, DII_density, HDI_density, e_density,
metal_density (gr_floatx) — arrays containing the species densities in code
units equivalent those of the density array

my_gamma (gr_float «) — array which will be filled with the calculated gamma values

Return type int

Returns 1 (success) or O (failure)

int calculate_pressure(code_units *my units, double a_value, int grid_rank,
Calculates the gas pressure.

Parameters

my_units (code_units«) - code units conversions

a_value (double) — the expansion factor in code units (a_code = a / a_units)
grid_rank (int) - the dimensionality of the grid

grid_dimension (int #) — array holding the size of the baryon field in each dimension

grid_start (int #) — array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

grid_end (int x) — array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

density (gr_float«)— array containing the density values in code units

internal_energy (gr_float)—array containing the specific internal energy values
in code units corresponding to erg/g

HI_density, HII_density, HM density, Hel_density,
HeII_density, HeIII_density, H2I_density, H2II_density,
DI_density, DII_density, HDI_density, e_density,
metal_density (gr_floatx) — arrays containing the species densities in code
units equivalent those of the density array

pressure (gr_float «) —array which will be filled with the calculated pressure values

Return type int

Returns 1 (success) or O (failure)

int *grid_dime:

int calculate_temperature (code_units *my_units, double a_value, int grid_rank, int *xgrid_d:
Calculates the gas temperature.

Parameters

my_units (code_units«) - code units conversions
a_value (double) — the expansion factor in code units (a_code = a / a_units)
grid_rank (int) - the dimensionality of the grid

grid _dimension (int #) — array holding the size of the baryon field in each dimension

26

Chapter 5. API Reference

grackle Documentation, Release 2.2

grid_start (int #) — array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

grid_end (int x) — array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

density (gr_float «)— array containing the density values in code units

internal_energy (gr_float*)— array containing the specific internal energy values
in code units corresponding to erg/g

HI_density, HII_density, HM density, HeI_density,
HeII_density, HeIII_density, H2I_density, H2II_density,
DI_density, DII_density, HDI_density, e_density,
metal_density (gr_floatx) — arrays containing the species densities in code
units equivalent those of the density array

temperature (gr_float «)—array which will be filled with the calculated temperature
values

Return type int

Returns

1 (success) or 0 (failure)

Tabular-Only Functions

These are slimmed down functions that require primordial_chemistry =0 and use only the tabulated cooling

rates (no chemistry).

int solve_chemistry table(code_units *my units, double a_value, double dt_value,

Evolves the internal energies over a given timestep by solving the cooling rate equations. This version allows
only for the use of the tabulated cooling functions.

Parameters

my_units (code_units«)—code units conversions

a_value (double) — the expansion factor in code units (a_code = a / a_units)
dt_value (double) — the integration timestep in code units

grid_rank (int) - the dimensionality of the grid

grid_dimension (int #) — array holding the size of the baryon field in each dimension

grid_start (int #) — array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

grid_end (int x) — array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

density (gr_float «)— array containing the density values in code units

internal_energy (gr_float x)— array containing the specific internal energy values
in code units corresponding to erg/g

x_velocity (gr_float«)— array containing the x velocity values in code units
y_velocity (gr_float) —array containing the y velocity values in code units
z_velocity (gr_float «)— array containing the z velocity values in code units

metal_density (gr_float«) — array containing the metal densities in code units
equivalent those of the density array. Used with metal_cooling=1.

5.1. Functions using structs (best for C and C++)

27

int grid_:

grackle Documentation, Release 2.2

Return type int

Returns 1 (success) or O (failure)

int calculate_cooling time_table(code_units *my units, double a_value, int grid_ rank,
Calculates the instantaneous cooling time. This version allows only for the use of the tabulated cooling functions.

Parameters

my_units (code_units«)—code units conversions

a_value (double) — the expansion factor in code units (a_code = a / a_units)
grid_rank (int) - the dimensionality of the grid

grid_dimension (int #) — array holding the size of the baryon field in each dimension

grid_start (int #) — array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

grid_end (int x) — array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

density (gr_float«)— array containing the density values in code units

internal_ energy (gr_float)—array containing the specific internal energy values
in code units corresponding to erg/g

x_velocity, y_velocity, z_velocity (gr_float~) — arrays containing the
X, y, and z velocity values in code units

metal density (gr_floatx) — array containing the metal densities in code units
equivalent those of the density array. Used with metal_ cooling=1.

cooling_time (gr_float) — array which will be filled with the calculated cooling
time values

Return type int

Returns 1 (success) or O (failure)

int

int calculate_pressure_table(code_units *my_units, double a_value, int grid_rank, int *gric
Calculates the gas pressure. This version allows only for the use of the tabulated cooling functions.

Parameters

my_units (code_units«) - code units conversions

a_value (double) — the expansion factor in code units (a_code = a / a_units)
grid_rank (int) - the dimensionality of the grid

grid_dimension (int) — array holding the size of the baryon field in each dimension

grid_start (int #) — array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

grid_end (int x) — array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

density (gr_float «)— array containing the density values in code units

internal_energy (gr_float*)— array containing the specific internal energy values
in code units corresponding to erg/g

pressure (gr_float) — array which will be filled with the calculated pressure values

Return type int

28

Chapter 5. API Reference

grackle Documentation, Release 2.2

Returns 1 (success) or O (failure)

int calculate_temperature_table(code_units *my_units, double a_value, int grid rank, int x
Calculates the gas temperature. This version allows only for the use of the tabulated cooling functions.

Parameters
* my_units (code_unitsx) - code units conversions
* a_value (double) — the expansion factor in code units (a_code = a / a_units)
* grid_rank (int) - the dimensionality of the grid
* grid_dimension (int #) — array holding the size of the baryon field in each dimension

* grid_start (int) — array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

* grid_end (int*) — array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

* density (gr_float«) — array containing the density values in code units

* internal_energy (gr_float «)—array containing the specific internal energy values
in code units corresponding to erg/g

* pressure (gr_float x)— array which will be filled with the calculated pressure values
Return type int

Returns 1 (success) or O (failure)

Functions without structs (best for Fortran)

These functions do not use any structs and are therefore much simpler to implement in Fortran codes. These
are used in the example files, c_example_nostruct.c, c_table_example_nostruct.c, fortran_example.F, and for-
tran_table_example.F.

Note: In Fortran codes, these should be called without the trailing underscore. The variable types can be mapped to
Fortran as: int* becomes integer, double* becomes real*8, and g float » becomes R_PREC.

int initialize_grackle_ (int *comoving coordinates, double *density_units, double *length_u
Initializes the grackle data structures and associated chemistry and cooling data. This performs the operations
of both set_default_chemistry_parameters () and initialize_chemistry_data().

Parameters
* comoving_coordinates (int*)— comoving coordinates parameter
* density_units (doublex*)— density_units conversion factor
* length_units (doublex)— length_units conversion factor
e time_units (double*)— time_units conversion factor
* velocity_units (double#*)— velocity_units conversion factor
e a_units (double*)— a_units conversion factor
* a_value (double*)— expansion factor in code units (a_code =a/ a_units)

* use_grackle (int+)— use_grackle parameter

5.2. Functions without structs (best for Fortran) 29

grackle Documentation, Release 2.2

* with_radiative_cooling (int+)— with radiative_ cooling parameter
* grackle_file (char*)— grackle_data_file parameter

* primordial_chemistry (int#)— primordial_ chemistry parameter

* metal_cooling (int*)—metal cooling parameter

* UVbackground (int x) — UVbackground parameter

* h2_on_dust (int*)— h2_on_dust parameter

* cmb_temperature_floor (intx)— cmb_temperature_ floor parameter

* gamma (double *) — Gamma parameter

Note: The last argument should omitted.

int solve_chemistry (int *comoving coordinates, double *density units, double *length_unit:
Evolves the species densities and internal energies over a given timestep by solving the chemistry and cooling
rate equations.

int calculate_ cooling time_(int *comoving coordinates, double *density_ units, double *leng
Calculates the instantaneous cooling time.

int calculate_gamma_ (int *comoving coordinates, double *density_ units, double *length_unit:
Calculates the effective adiabatic index. This is only useful with primordial_ chemistry >=2 as the only
thing that alters gamma from the single value is H,.

int calculate_pressure_(int *comoving coordinates, double *density units, double xlength_u
Calculates the gas pressure.

int calculate_temperature_ (int *comoving coordinates, double *density_units, double *lengtl
Calculates the gas temperature.

Tabular-Only Functions
These are slimmed down functions that require primordial_chemistry =0 and use only the tabulated cooling
rates (no chemistry).

int solve_chemistry table_(int *comoving coordinates, double *density_units, double *lengtl
Evolves the internal energies over a given timestep by solving the cooling rate equations. This version allows
only for the use of the tabulated cooling functions.

int calculate_cooling time_table_(int *comoving_ coordinates, double *density units, double
Calculates the instantaneous cooling time. This version allows only for the use of the tabulated cooling functions.

int calculate_pressure_table_(int *comoving coordinates, double *density units, double xlei
Calculates the gas pressure. This version allows only for the use of the tabulated cooling functions.

int calculate_temperature_table_ (int *comoving coordinates, double *density units, double
Calculates the gas temperature. This version allows only for the use of the tabulated cooling functions.

Internal Functions

These functions are mostly for internal use, but can also be used to call the various functions with different parameter
values within a single code.

30 Chapter 5. API Reference

grackle Documentation, Release 2.2

chemistry_data _set_default_chemistry parameters();
Initializes and returns chemistry_data data structure. This must be called before run time parameters can
be set.

Returns data structure containing all run time parameters and all chemistry and cooling data arrays
Return type chemistry_data

int _initialize_chemistry_data(chemistry data *my_chemistry, code_units *my_ units, double :
Loads all chemistry and cooling data, given the set run time parameters. This can only be called after
_set_default_chemistry parameters().

Parameters

* my chemistry (chemistry_datax) — the structure returned by
_set_default_chemistry_parameters()

* my units (code_unitsx)— code units conversions

* a_value (double) —the expansion factor in code units (a_code = a / a_units)
Return type int
Returns 1 (success) or O (failure)

int _solve_chemistry(chemistry data *my_ chemistry, code_units *my_ units, double a_value, d«
Evolves the species densities and internal energies over a given timestep by solving the chemistry and cooling
rate equations.

int _calculate_cooling time (chemistry data *my_chemistry, code_units *my_ units, double a_v:
Calculates the instantaneous cooling time.

int _calculate_gamma (chemistry data *my_chemistry, code_units *my_units, double a_value, ii
Calculates the effective adiabatic index. This is only useful with primordial chemistry >=2 as the only
thing that alters gamma from the single value is H,.

int _calculate_ pressure (chemistry data *my_ chemistry, code_units *my_units, double a_value
Calculates the gas pressure.

int _calculate_temperature (chemistry data *my_chemistry, code_units *my_units, double a_va.
Calculates the gas temperature.

Tabular-Only Functions

These are slimmed down functions that require primordial chemistry =0 and use only the tabulated cooling
rates (no chemistry).

int _solve_chemistry table(chemistry data *my_chemistry, code_units *my_units, double a_va.
Evolves the internal energies over a given timestep by solving the cooling rate equations. This version allows
only for the use of the tabulated cooling functions.

int _calculate_cooling time_table (chemistry data *my_ chemistry, code_units *my_units, doub.
Calculates the instantaneous cooling time. This version allows only for the use of the tabulated cooling functions.

int _calculate_pressure_table (chemistry data *my_chemistry, code_units *my_ units, double a.
Calculates the gas pressure. This version allows only for the use of the tabulated cooling functions.

int _calculate_temperature_table (chemistry data *my_chemistry, code_units *my_units, double
Calculates the gas temperature. This version allows only for the use of the tabulated cooling functions.

5.3. Internal Functions 31

grackle Documentation, Release 2.2

32 Chapter 5. API Reference

CHAPTER O

Pygrackle: Running Grackle in Python

Grackle comes with a Python interface, called Pygrackle, which provides access to all of Grackle’s functionality.
Pygrackle requires the following Python packages:

e Cython

* flake8 (only required for the test suite)
* matplotlib

e NumPy

* py.test (only required for the test suite)
oyt

The easiest thing to do is follow the instructions for installing yt, which will provide you with Cython, matplotlib, and
NumPy. Flake8 and py.test can then be installed via pip.

Installing Pygrackle

Once the Grackle library has been built and the above dependencies have been installed, Pygrackle can be installed by
moving into the sre/python directory and running python setup.py install.

~/grackle $ cd src/python
~/grackle/src/python $ python setup.py install

Note: Pygrackle can only be run when Grackle is compiled without OpenMP. See Running with OpenMP.

33

http://www.cython.org/
http://matplotlib.org/
http://www.numpy.org/
http://yt-project.org/

grackle Documentation, Release 2.2

Running the Example Scripts

A number of example scripts are available in the src¢/python/examples directory. These scripts provide examples of
ways that Grackle can be used in simplified models, such as solving the temperature evolution of a parcel of gas at
constant density or in a free-fall model. Each example will produce a figure as well as a dataset that can be loaded and

analyzed with yt.

Cooling Rate Figure Example

This sets up a one-dimensional grid at a constant density with logarithmically spaced temperatures from 10 K to 10°
K. Radiative cooling is disabled and the chemistry solver is iterated until the species fractions have converged. The
cooling time is then calculated and used to compute the cooling rate.

python cooling_rate.py

10-21 T T T

1022_

1023_

10247

1025

Alerg s~' cm?]

1026_

1027}

1028

10! 102 10° 10*

10° 108 107

T [K]

108 10°

After the script runs, and hdf5 file will be created with a similar name. This can be loaded in with yt.

>>> import yt

>>> ds =

>>> print ds.data["temperature"]

[1.00000000e+01 1.09698580e+01
7.57525026e+08 8.30994195e+08

>>> print ds.data["cooling rate"]

[1.09233398e-25 1.08692516e-25
3.77902570e-23 3.94523273e-23

yt.load("cooling rate.hb")

1.20337784e+01
9.11588830e+08

1.08117583e-25
4.12003667e-23

1.32008840e+01, ...,
1.00000000e+09] K

1.07505345e-25, ...,

4.30376998e-23] cm*x3*erg/s

34

Chapter 6.

Pygrackle: Running Grackle in Python

http://yt-project.org/

grackle Documentation, Release 2.2

Cooling Cell Example

This sets up a single grid cell with an initial density and temperature and solves the chemistry and cooling for a given
amount of time. The resulting dataset gives the values of the densities, temperatures, and mean molecular weights for
all times.

python cooling_cell.py

108 , . (0.85
{0.80
107}
10.75
Z — T
= — B
10.70
104} L
10.65
10° L L ' .60
107 101 10° 10! 109

Time [Myr]

>>> import yt

>>> ds = yt.load("cooling cell.hb")

>>> print ds.data["time"].to("Myr")

YTArray ([0.00000000e+00, 6.74660169e-02, 1.34932034e-01, ...,
9.98497051e+01, 9.99171711e+01, 9.99846371e+01]) Myr

>>> print ds.data["temperature"]

YTArray ([990014.56406726, 980007.32720091, 969992.99066987, ...,
9263.81515866, 9263.81515824, 9263.81515865]) K

Free-Fall Collapse Example

This sets up a single grid cell with an initial number density of 1 cm™. The density increases with time following a
free-fall collapse model. As the density increases, thermal energy is added to model heating via adiabatic compression.
This can be useful for testing chemistry networks over a large range in density.

python freefall.py

6.2. Running the Example Scripts 35

grackle Documentation, Release 2.2

104 T T T T T T T T T T T T 100
— T
. fH'J
103} {101
=
S
% 9
= &
T
102} {107
3

10]- L L L L L L L L L L L L L 0
102° 1021021022 1021 102% 101% 1018 1017 1016 1017 1014 101% 10712 10'Ill
p [g/em?]

The resulting dataset can be analyzed similarly as above.

>>> import yt

>>> ds = yt.load("freefall.hb")

>>> print ds.data["time"].to("Myr")

[0. 0.45900816 0.91572127 ..., 219.90360841 219.90360855
219.9036087] Myr

>>> print ds.data["density"]

[1.67373522e-25 1.69059895e-25 1.70763258e-25 ..., 1.65068531e-12

1.66121253e~-12 1.67178981e-12] g/cm*=*3

>>> print ds.data["temperature"]

[99.94958248 100.61345564 101.28160228 ..., 1728.89321898
1729.32604568 1729.75744287] K

Simulation Dataset Example

This provides an example of using the grackle library for calculating chemistry and cooling quantities for a pre-existing
simulation dataset. To run this example, you must also download the IsolatedGalaxy dataset from the yt sample data

page.

python run_from_yt.py

36 Chapter 6. Pygrackle: Running Grackle in Python

http://yt-project.org/data/
http://yt-project.org/data/

CHAPTER /

Help

If you have any questions, please join the Grackle Users Google Group. Feel free to post any questions or ideas for
development.

37

https://groups.google.com/forum/#!forum/grackle-cooling-users

grackle Documentation, Release 2.2

38 Chapter 7. Help

CHAPTER 8

Citing grackle

The Grackle library was born out of the chemistry and cooling routines of the Enzo simulation code. As such, all of
those who have contributed to Enzo development, and especially to the chemistry and cooling, have contributed to
the Grackle. There is currently no paper that specifically presents the Grackle library on its own, but the functionality
was fully described in the Enzo method paper. The Grackle was originally designed for the AGORA Project and first
referred to by name in the AGORA method paper.

If you used the Grackle library in your work, please cite it as “the Grackle chemistry and cooling library (The Enzo
Collaboration et al. 2014; Kim, J. et al. 2014).” Also, please add a footnote to https://grackle.readthedocs.org/.

The Enzo Collaboration, Bryan, G. L., Norman, M. L., et al. 2014, ApJS, 211, 19
Kim, J.-h., Abel, T., Agertz, O., et al. 2014, ApJS, 210, 14

39

http://enzo-project.org/
http://adsabs.harvard.edu/abs/2013arXiv1307.2265T
https://sites.google.com/site/santacruzcomparisonproject/
http://adsabs.harvard.edu/abs/2013arXiv1308.2669K
http://adsabs.harvard.edu/abs/2014ApJS..211...19B
http://adsabs.harvard.edu/abs/2014ApJS..211...19B
http://adsabs.harvard.edu/abs/2014ApJS..210...14K
https://grackle.readthedocs.org/

grackle Documentation, Release 2.2

40 Chapter 8. Citing grackle

CHAPTER 9

Search

e search

41

grackle Documentation, Release 2.2

42 Chapter 9. Search

Index

A

a_units (C variable), 11

C

chemistry_data (C type), 12
cie_cooling (C variable), 20
cmb_temperature_floor (C variable), 20
code_units (C type), 11
comoving_coordinates (C variable), 11
Compton_xray_heating (C variable), 20

D

density_units (C variable), 11

G

Gamma (C variable), 20
gr_float (C type), 10
grackle_data_file (C variable), 20

H

h2_on_dust (C variable), 19

h2_optical_depth_approximation (C variable), 20

L

length_units (C variable), 11
LWhbackground_intensity (C variable), 20

LWhbackground_sawtooth_suppression (C variable), 20

M

metal_cooling (C variable), 19

O

omp_nthreads (C variable), 20

P

photoelectric_heating (C variable), 20

photoelectric_heating_rate (C variable), 20

primordial_chemistry (C variable), 19

R

R_PREC (C type), 10

T

three_body_rate (C variable), 20
time_units (C variable), 11

U

use_grackle (C variable), 19
UVbackground (C variable), 20

\Y

velocity_units (C variable), 11

W

with_radiative_cooling (C variable), 19

43

	Installation
	Dependencies
	Downloading
	Building

	Running the Test Suite
	Adding Grackle to Your Simulation Code
	Example Executables
	Header Files
	Data Types
	Enabling Output
	Code Units
	Chemistry Data
	Running with OpenMP
	Creating the Necessary Fields
	Calling the Available Functions
	Pure Tabulated Mode

	Parameters and Data Files
	Parameters
	Data Files

	API Reference
	Functions using structs (best for C and C++)
	Functions without structs (best for Fortran)
	Internal Functions

	Pygrackle: Running Grackle in Python
	Installing Pygrackle
	Running the Example Scripts

	Help
	Citing grackle
	Search

