
grackle Documentation
Release 3.1.1

Jul 08, 2019

Contents

1 Installation 3
1.1 Dependencies . 3
1.2 Downloading . 3
1.3 Building . 3

2 Running the Test Suite 7

3 Adding Grackle to Your Simulation Code 9
3.1 Example Executables . 9
3.2 Header Files . 9
3.3 Data Types . 10
3.4 Enabling Output . 10
3.5 Code Units . 10
3.6 Chemistry Data . 11
3.7 Running with OpenMP . 12
3.8 Creating the Necessary Fields . 13
3.9 Calling the Available Functions . 16
3.10 Cleaning the memory . 17

4 Parameters and Data Files 19
4.1 Parameters . 19
4.2 Data Files . 23

5 API Reference 25
5.1 Primary Functions . 25
5.2 Local Functions . 27
5.3 Internal Functions . 28

6 Pygrackle: Running Grackle in Python 33
6.1 Installing Pygrackle . 33
6.2 Running the Example Scripts . 34

7 Grackle Community Code of Conduct 37

8 How to Develop Grackle 39
8.1 Open Issues . 39
8.2 Contributing to Grackle with Git and Github . 39

i

8.3 Making and Sharing Changes . 40

9 Help 43
9.1 Mailing List . 43
9.2 Slack Channel . 43

10 Help 45
10.1 Mailing List . 45
10.2 Slack Channel . 45

11 Contributing 47

12 Citing grackle 49

13 Search 51

Index 53

ii

grackle Documentation, Release 3.1.1

Grackle is a chemistry and radiative cooling library for astrophysical simulations and models. Grackle has interfaces
for C, C++, Fortran, and Python codes and provides:

• two options for primordial chemistry and cooling:

1. non-equilibrium primordial chemistry network for atomic H, D, and He as well as H2 and HD, including
H2 formation on dust grains.

2. tabulated H and He cooling rates calculated with the photo-ionization code, Cloudy.

• tabulated metal cooling rates calculated with Cloudy.

• photo-heating and photo-ionization from two UV backgrounds:

1. Faucher-Giguere et al. (2009).

2. Haardt & Madau (2012).

• support for user-provided arrays of volumetric and specific heating rates.

The Grackle provides functions to update chemistry species; solve radiative cooling and update internal energy; and
calculate cooling time, temperature, pressure, and ratio of specific heats (gamma).

Contents:

Contents 1

http://nublado.org
http://nublado.org
http://adsabs.harvard.edu/abs/2009ApJ...703.1416F
http://adsabs.harvard.edu/abs/2012ApJ...746..125H

grackle Documentation, Release 3.1.1

2 Contents

CHAPTER 1

Installation

The compilation process for grackle is very similar to that for Enzo. For more details on the Enzo build system, see
the Enzo build documentation.

1.1 Dependencies

In addition to C/C++ and Fortran compilers, the following dependency must also be installed:

• HDF5, the hierarchical data format. HDF5 also may require the szip and zlib libraries, which can be found at
the HDF5 website. Compiling with HDF5 1.8 or greater requires that the compiler directive H5_USE_16_API
be specified. This can be done with -DH5_USE_16_API, which is in the machine specific make files.

1.2 Downloading

Grackle is available in a git repository here. Excellent guides to git and GitHub are available at guides.github.com. To
clone the Grackle repo, do the following:

~ $ git clone https://github.com/grackle-project/grackle

1.3 Building

1. Initialize the build system.

~ $ cd grackle
~/grackle $./configure

2. Proceed to the source directory.

3

http://enzo-project.org
https://enzo.readthedocs.org/en/latest/tutorials/building_enzo.html
http://www.hdfgroup.org/HDF5/
https://github.com/grackle-project/grackle
https://guides.github.com/

grackle Documentation, Release 3.1.1

~/grackle $ cd src/clib

3. Configure the build system.

Note: As of version 2.1, Grackle uses libtool for building and installation. As such, both shared and static libraries
will be built automatically and it is not necessary to add the -fPIC compiler flag.

Compile settings for different systems are stored in files starting with “Make.mach” in the source directory. Grackle
comes with three sample make macros: Make.mach.darwin for Mac OSX, Make.mach.linux-gnu for Linux
systems, and an unformatted Make.mach.unknown. If you have a make file prepared for an Enzo install, it cannot
be used straight away, but is a very good place to start.

Once you have chosen the make file to be used, a few variables should be set:

• MACH_LIBTOOL - path to libtool executable. Note, on a Mac, this should point to glibtool, which can
be installed with macports or homebrew.

• LOCAL_HDF5_INSTALL - path to your hdf5 installation.

• LOCAL_FC_INSTALL - path to Fortran compilers (not including the bin subdirectory).

• MACH_INSTALL_PREFIX - path where grackle header and library files will be installed.

• MACH_INSTALL_LIB_DIR - path where libgrackle will be installed (only set if different from
MACH_INSTALL_PREFIX/lib).

• MACH_INSTALL_INCLUDE_DIR - path where grackle header files will be installed (only set if different from
MACH_INSTALL_PREFIX/include).

Once the proper variables are set, they are loaded into the build system by doing the following:

~/grackle/src/clib $ make machine-<system>

Where system refers to the make file you have chosen. For example, if you chose Make.mach.darwin, type:

~/grackle/src/clib $ make machine-darwin

Custom make files can be saved and loaded from a .grackle directory in the home directory.

1.3.1 Compiler Settings

There are three compile options available for setting the precision of baryon fields, compiler optimization, and enabling
OpenMP. To see them, type:

~/grackle/src/clib $ make show-config

MACHINE: Darwin (OSX)
MACHINE-NAME: darwin

CONFIG_PRECISION [precision-{32,64}] : 64
CONFIG_OPT [opt-{warn,debug,high,aggressive}] : high
CONFIG_OMP [omp-{on,off}] : off

For example, to change the optimization to high, type:

~/grackle/src/clib $ make opt-high

4 Chapter 1. Installation

grackle Documentation, Release 3.1.1

Custom settings can be saved for later use by typing:

~/grackle/src/clib $ make save-config-<keyword>

They will be saved in the .grackle directory in your home directory. To reload them, type:

~/grackle/src/clib $ make load-config-<keyword>

For a list of all available make commands, type:

~/grackle/src/clib $ make help

==
Grackle Makefile Help

==

make Compile and generate librackle
make install Copy the library somewhere
make help Display this help information
make clean Remove object files, executable, etc.
make dep Create make dependencies in DEPEND file

make show-version Display revision control system branch and revision
make show-diff Display local file modifications

make help-config Display detailed help on configuration make targets
make show-config Display the configuration settings
make show-flags Display specific compilation flags
make default Reset the configuration to the default values

4. Compile and Install

To build the code, type:

~/grackle/src/clib $ make
Updating DEPEND
Compiling calc_rates.F
Compiling cool1d_multi.F
....

Linking
Success!

Then, to install:

~/grackle/src/clib $ make install

5. Test your Installation

Once installed, you can test your installation with the provided example to assure it is functioning correctly. If some-
thing goes wrong in this process, check the out.compile file to see what went wrong during compilation, or use
ldd (otool -L on Mac) on your executable to determine what went wrong during linking.

~/grackle/src/clib $ cd ../example
~/grackle/src/example $ make clean
~/grackle/src/example $ make

Compiling cxx_example.C

(continues on next page)

1.3. Building 5

grackle Documentation, Release 3.1.1

(continued from previous page)

Linking
Success!

~/grackle/src/example $./cxx_example

The Grackle Version 2.2
Mercurial Branch default
Mercurial Revision b4650914153d

Initializing grackle data.
with_radiative_cooling: 1.
primordial_chemistry: 3.
metal_cooling: 1.
UVbackground: 1.
Initializing Cloudy cooling: Metals.
cloudy_table_file: ../../input/CloudyData_UVB=HM2012.h5.
Cloudy cooling grid rank: 3.
Cloudy cooling grid dimensions: 29 26 161.
Parameter1: -10 to 4 (29 steps).
Parameter2: 0 to 14.849 (26 steps).
Temperature: 1 to 9 (161 steps).
Reading Cloudy Cooling dataset.
Reading Cloudy Heating dataset.
Initializing UV background.
Reading UV background data from ../../input/CloudyData_UVB=HM2012.h5.
UV background information:
Haardt & Madau (2012, ApJ, 746, 125) [Galaxies & Quasars]
z_min = 0.000
z_max = 15.130
Setting UVbackground_redshift_on to 15.130000.
Setting UVbackground_redshift_off to 0.000000.
Cooling time = -1.434987e+13 s.
Temperature = 4.637034e+02 K.
Pressure = 3.345738e+34.
gamma = 1.666645e+00.

In order to verify that Grackle is fully functional, try running the test suite.

6 Chapter 1. Installation

CHAPTER 2

Running the Test Suite

Grackle contains a number of unit and answer tests to verify that everything is working properly. These will verify
that:

• proper and comoving unit systems are consistent

• atomic, primordial collisional ionization equilibrium agrees with the analytical solution

• all code examples build and run

• all python examples run and give correct results

• all Python code conforms to PEP 8

Once you have installed pygrackle, the tests can be run from the src directory by typing make test:

~ $ cd grackle/src
~/grackle/src $ make test

or from the src/python directory by typing py.test:

~ $ cd grackle/src/python
~/grackle/src $ py.test

===================================== test session starts
→˓======================================
platform darwin -- Python 2.7.11, pytest-2.8.1, py-1.4.30, pluggy-0.3.1
rootdir: /Users/britton/Documents/work/simulation/grackle/grackle/src/python, inifile:
collected 13 items

tests/test_chemistry.py ...
tests/test_code_examples.py
tests/test_examples.py
tests/test_flake8.py .
tests/test_primordial.py .

================================== 17 passed in 68.83 seconds
→˓==================================

7

https://www.python.org/dev/peps/pep-0008/

grackle Documentation, Release 3.1.1

Now it’s time to integrate grackle into your simulation code.

8 Chapter 2. Running the Test Suite

CHAPTER 3

Adding Grackle to Your Simulation Code

The majority of this document follows the implementation of Grackle in a C++ simulation code. Full implementa-
tion examples for C, C++, and Fortran are also available in the Grackle source. See Example Executables for more
information. For a list of all available functions, see the API Reference.

3.1 Example Executables

The grackle source code contains examples for C, C++, and Fortran codes. They are located in the src/example
directory and provide examples of calling all of grackle’s functions.

• c_example.c - C example

• cxx_example.C - C++ example

• cxx_omp_example.C - C++ example using OpenMP

• fortran_example.F - Fortran example

Once you have already installed the grackle library, you can build the examples by typing make and the name of the
file without extension. For example, to build the C++ example, type:

$ make cxx_example

To run the example, make sure to add the path to the directory containing the installed libgrackle.so to your
LD_LIBRARY_PATH (or DYLD_LIBRARY_PATH on Mac).

3.2 Header Files

Seven header files are installed with the grackle library. They are:

• grackle.h - the primary header file, containing declarations for all the available functions and data structures.
This is the only header file that needs to be included for C and C++ codes.

• grackle.def - the header file to be used in Fortran codes. Only this file needs to be included.

9

grackle Documentation, Release 3.1.1

• grackle_types.h - defines the variable type gr_float, the field structure grackle_field_data, and the
units structure code_units.

• grackle_chemistry_data.h - defines the chemistry_data structure, which stores all Grackle run-time pa-
rameters and the chemistry_data_storage structure, which stores all chemistry and cooling rate data.

• grackle_fortran_types.def - similar to grackle_types.h, but used with Fortran codes. This defines the variable
type R_PREC as either real*4 or real*8.

• grackle_fortran_interface.def - defines the Fortran interface, including the Fortran analogs of
grackle_field_data, code_units, and grackle_chemistry_data.

• grackle_macros.h - contains some macros used internally.

For C and C++ codes, the only source file that needs to be included in your simulation code is grackle.h. For Fortran,
use grackle.def. Since Grackle is written in C, including grackle.h in a C++ code requires the extern “C” directive.

extern "C" {
#include <grackle.h>
}

3.3 Data Types

The grackle library provides a configurable variable type to control the precision of the baryon fields passed to the
grackle functions. For C and C++ codes, this is gr_float. For Fortran codes, this is R_PREC. The precision of
these types can be configured with the precision compile option. Compile with precision-32 to make gr_float and
R_PREC a 4 byte float (float for C/C++ and real*4 for Fortran). Compile with precision-64 to make gr_float and
R_PREC an 8 byte float (double for C/C++ and real*8 for Fortran).

gr_float
Floating point type used for the baryon fields. This is of type float if compiled with precision-32 and type double
if compiled with precision-64.

R_PREC
The Fortran analog of gr_float. This is of type real*4 if compiled with precision-32 and type real*8 if
compiled with precision-64.

3.4 Enabling Output

By default, grackle will not print anything but error messages. However, a short summary of the running configuration
can be printed by setting grackle_verbose to 1. In a parallel code, it is recommended that output only be enabled
for the root process.

// Enable output
grackle_verbose = 1;

3.5 Code Units

It is strongly recommended to use comoving coordinates with any cosmological simulation. The code_units
structure contains conversions from code units to CGS. If comoving_coordinates is set to 0, it is assumed that
the fields passed into the solver are in the proper frame. All of the units (density, length, time, velocity, and expansion
factor) must be set. When using the proper frame, a_units (units for the expansion factor) must be set to 1.0.

10 Chapter 3. Adding Grackle to Your Simulation Code

grackle Documentation, Release 3.1.1

code_units
This structure contains the following members.

int comoving_coordinates
If set to 1, the incoming field data is assumed to be in the comoving frame. If set to 0, the incoming field data is
assumed to be in the proper frame.

double density_units
Conversion factor to be multiplied by density fields to return densities in proper g/cm3.

double length_units
Conversion factor to be multiplied by length variables to return lengths in proper cm.

double time_units
Conversion factor to be multiplied by time variables to return times in s.

double velocity_units
Conversion factor to be multiplied by velocities to return proper cm/s.

double a_units
Conversion factor to be multiplied by the expansion factor such that atrue = acode* a_units.

double a_value
The current value of the expansion factor in units of a_units. The conversion from redshift to expansion factor
in code units is given by a_value = 1 / (1 + z) / a_units. If the simulation is not cosmological, a_value
should be set to 1. Note, if a_value is set to something other than 1 in a non-cosmological simulation, all
redshift dependent chemistry and cooling terms will be set corresponding to the redshift given.

code_units my_units;
my_units.comoving_coordinates = 0; // 1 if cosmological sim, 0 if not
my_units.density_units = 1.67e-24; // 1 m_H/cc
my_units.length_units = 3.086e21; // 1 kpc
my_units.time_units = 3.15569e13; // 1 Myr
my_units.velocity_units = my_units.length_units / my_units.time_units;
my_units.a_units = 1.0; // units for the expansion factor
my_units.a_value = 1. / (1. + current_redshift) / my_units.a_units;

If comoving_coordinates is set to 1, it is assumed that the fields being passed to the solver are in the comoving
frame. Hence, the units must convert from code units in the comoving frame to CGS in the proper frame.

Note: With comoving_coordinate set to 1, velocity units need to be defined in the following way.

my_units.velocity_units = my_units.a_units *
(my_units.length_units / a_value) / my_units.time_units; // since u = a * dx/dt

For an example of using comoving units, see the units system in the Enzo code. For cosmological simulations, a
comoving unit system is preferred, though not required, since it allows the densities to stay close to 1.0.

3.6 Chemistry Data

The main Grackle header file contains a structure of type chemistry_data called grackle_data,
which contains all of the parameters that control the behavior of the solver. The routine,
set_default_chemistry_parameters() is responsible for the initial setup of this structure and for setting
of all the default parameter values. This function must be handed a pointer to an instance of chemistry_data,
which will then be attached to grackle_data. The function will return an integer indicating success (1) or failure

3.6. Chemistry Data 11

http://enzo-project.org/

grackle Documentation, Release 3.1.1

(0). After this, parameters can then be set to their desired values by accessing grackle_data. See Parameters and
Data Files for a full list of the available parameters.

chemistry_data
This structure holds all grackle run-time parameters, which are listed in Parameters and Data Files.

chemistry_data_storage
This structure holds all chemistry and cooling rate arrays. All functions described here make use of an internally
stored instance of this type. The user will not normally encounter this data type, except when using the Internal
Functions.

chemistry_data *my_grackle_data;
my_grackle_data = new chemistry_data;
if (set_default_chemistry_parameters(my_grackle_data) == 0) {

fprintf(stderr, "Error in set_default_chemistry_parameters.\n");
}

// Set parameter values for chemistry.
// Now access the global copy of the chemistry_data struct (grackle_data).
grackle_data->use_grackle = 1; // chemistry on
grackle_data->with_radiative_cooling = 1; // cooling on
grackle_data->primordial_chemistry = 3; // molecular network with H, He, D
grackle_data->metal_cooling = 1; // metal cooling on
grackle_data->UVbackground = 1; // UV background on
grackle_data->grackle_data_file = "CloudyData_UVB=HM2012.h5"; // data file

Once the desired parameters have been set, the chemistry and cooling rates must be initialized by calling
initialize_chemistry_data() with a pointer to the code_units struct created earlier. This function will
return an integer indicating success (1) or failure (0).

// Finally, initialize the chemistry object.
if (initialize_chemistry_data(&my_units) == 0) {

fprintf(stderr, "Error in initialize_chemistry_data.\n");
return 0;

}

The Grackle is now ready to be used.

3.7 Running with OpenMP

As of version 2.2, Grackle can be run with OpenMP parallelism. To do this, the library must first be compiled with
OpenMP support enabled by issuing the command, “make omp-on”, before compiling. See Compiler Settings for
more information on how to change settings.

For an example of how to compile your code with OpenMP, see the cxx_omp_example.C code example (Example
Executables). Once your code has been compiled with OpenMP enabled, the number of threads used can be controlled
by setting the omp_nthreads parameter, stored in the grackle_data struct.

// 8 threads per process
grackle_data->omp_nthreads = 8;

If not set, this parameter will be set to the maximum number of threads possible, as determined by the system or as
configured by setting the OMP_NUM_THREADS environment variable.

12 Chapter 3. Adding Grackle to Your Simulation Code

grackle Documentation, Release 3.1.1

3.8 Creating the Necessary Fields

As of version 3.0, the various density and energy fields are passed to Grackle’s functions using a struct of type
grackle_field_data. The struct contains information about the size and shape of the field arrays and point-
ers to all field arrays.

grackle_field_data
This structure is used to pass field data to Grackle’s functions. It contains the following members:

int grid_rank
The active dimensions (not including ignored boundary zones) of the field arrays.

int* grid_dimension
This should point to an array of size grid_rank. This stores the size of the field arrays in each dimension.

int* grid_start
This should point to an array of size grid_rank. This stores the starting value in each dimension for the field
data. This can be used to ignore boundary cells in grid data.

int* grid_end
This should point to an array of size grid_rank. This stores the end value in each dimension for the field
data. This can be used to ignore boundary cells in grid data.

gr_float* grid_dx
This is the grid cell width in length_units. This is currently used only in computing approximate H2
self-shielding when H2 is tracked (primordial_chemistry >= 2) and H2_self_shielding is set to
1.

gr_float* density
Pointer to the density field array.

gr_float* HI_density
Pointer to the HI density field array. Used when primordial_chemistry is set to 1, 2, or 3.

gr_float* HII_density
Pointer to the HII density field array. Used when primordial_chemistry is set to 1, 2, or 3.

gr_float* HM_density
Pointer to the H- density field array. Used when primordial_chemistry is set to 2 or 3.

gr_float* HeI_density
Pointer to the HeI density field array. Used when primordial_chemistry is set to 1, 2, or 3.

gr_float* HeII_density
Pointer to the HeII density field array. Used when primordial_chemistry is set to 1, 2, or 3.

gr_float* HeIII_density
Pointer to the HeIII density field array. Used when primordial_chemistry is set to 1, 2, or 3.

gr_float* H2I_density
Pointer to the H2 density field array. Used when primordial_chemistry is set to 2 or 3.

gr_float* H2II_density
Pointer to the H2

+ density field array. Used when primordial_chemistry is set to 2 or 3.

gr_float* DI_density
Pointer to the DI density field array. Used when primordial_chemistry is set to 3.

gr_float* DII_density
Pointer to the DII density field array. Used when primordial_chemistry is set to 3.

3.8. Creating the Necessary Fields 13

grackle Documentation, Release 3.1.1

gr_float* HDI_density
Pointer to the HD density field array. Used when primordial_chemistry is set to 3.

gr_float* e_density
Pointer to the electron density field array. Used when primordial_chemistry is set to 1, 2, or 3. Note,
the electron mass density should be scaled by the ratio of the proton mass to the electron mass such that the
electron density in the code is the electron number density times the proton mass.

gr_float* metal_density
Pointer to the metal density field array. Used when metal_cooling is set to 1.

gr_float* internal_energy
Pointer to the internal energy field array.

gr_float* x_velocity
Pointer to the x-velocity field array. Currently not used.

gr_float* y_velocity
Pointer to the y-velocity field array. Currently not used.

gr_float* z_velocity
Pointer to the z-velocity field array. Currently not used.

gr_float* volumetric_heating_rate
Pointer to values containing volumetric heating rates. Rates should be in units of erg/s/cm3. Used when
use_volumetric_heating_rate is set to 1.

gr_float* specific_heating_rate
Pointer to values containing specific heating rates. Rates should be in units of erg/s/g. Used when
use_specific_heating_rate is set to 1.

gr_float *RT_heating_rate
Pointer to the radiation transfer heating rate field. Rates should be in units of (erg/s/cm3) / nHI, where nHI is
the neutral hydrogen number density. Heating rates for additional species are currently not yet supported. Used
when use_radiative_transfer is set to 1.

gr_float *RT_HI_ionization_rate
Pointer to the HI photo-ionization rate field used with radiative transfer. Rates should be in units of
1/time_units. Used when use_radiative_transfer is set to 1.

gr_float *RT_HeI_ionization_rate
Pointer to the HeI photo-ionization rate field used with radiative transfer. Rates should be in units of
1/time_units. Used when use_radiative_transfer is set to 1.

gr_float *RT_HeII_ionization_rate
Pointer to the HeII photo-ionization rate field used with radiative transfer. Rates should be in units of
1/time_units. Used when use_radiative_transfer is set to 1.

gr_float *RT_H2_dissociation_rate
Pointer to the H2 photo-dissociation rate field used with radiative transfer. Rates should be in units of
1/time_units. Used when use_radiative_transfer is set to 1 and primordial_chemistry
is either 2 or 3.

gr_float *H2_self_shielding_length
Pointer to a field containing lengths to be used for calculating molecular hydrogen column denisty for H22self-
shielding. Used when H2_self_shielding is set to 2. Field data should be in length_units.

It is not necessary to attach a pointer to any field that you do not intend to use.

// Create struct for storing grackle field data
grackle_field_data my_fields;

(continues on next page)

14 Chapter 3. Adding Grackle to Your Simulation Code

grackle Documentation, Release 3.1.1

(continued from previous page)

// Set grid dimension and size.
// grid_start and grid_end are used to ignore ghost zones.
int field_size = 1;
my_fields.grid_rank = 3;
my_fields.grid_dimension = new int[3];
my_fields.grid_start = new int[3];
my_fields.grid_end = new int[3];
my_fields.grid_dx = 1.0; // only matters if H2 self-shielding is used
for (int i = 0;i < 3;i++) {
my_fields.grid_dimension[i] = 1;
my_fields.grid_start[i] = 0;
my_fields.grid_end[i] = 0;

}
my_fields.grid_dimension[0] = field_size;
my_fields.grid_end[0] = field_size - 1;

// Set field arrays.
my_fields.density = new gr_float[field_size];
my_fields.internal_energy = new gr_float[field_size];
my_fields.x_velocity = new gr_float[field_size];
my_fields.y_velocity = new gr_float[field_size];
my_fields.z_velocity = new gr_float[field_size];
// for primordial_chemistry >= 1
my_fields.HI_density = new gr_float[field_size];
my_fields.HII_density = new gr_float[field_size];
my_fields.HeI_density = new gr_float[field_size];
my_fields.HeII_density = new gr_float[field_size];
my_fields.HeIII_density = new gr_float[field_size];
my_fields.e_density = new gr_float[field_size];
// for primordial_chemistry >= 2
my_fields.HM_density = new gr_float[field_size];
my_fields.H2I_density = new gr_float[field_size];
my_fields.H2II_density = new gr_float[field_size];
// for primordial_chemistry >= 3
my_fields.DI_density = new gr_float[field_size];
my_fields.DII_density = new gr_float[field_size];
my_fields.HDI_density = new gr_float[field_size];
// for metal_cooling = 1
my_fields.metal_density = new gr_float[field_size];
// volumetric heating rate (provide in units [erg s^-1 cm^-3])
my_fields.volumetric_heating_rate = new gr_float[field_size];
// specific heating rate (provide in units [egs s^-1 g^-1]
my_fields.specific_heating_rate = new gr_float[field_size];
// heating rate from radiative transfer calculations (provide in units [erg s^-1 cm^-
→˓3]
my_fields.RT_heating_rate = new gr_float[field_size];
// HI ionization rate from radiative transfer calculations (provide in units of [1/
→˓time_units]
my_fields.RT_HI_ionization_rate = new gr_float[field_size];
// HeI ionization rate from radiative transfer calculations (provide in units of [1/
→˓time_units]
my_fields.RT_HeI_ionization_rate = new gr_float[field_size];
// HeII ionization rate from radiative transfer calculations (provide in units of [1/
→˓time_units]
my_fields.RT_HeII_ionization_rate = new gr_float[field_size];
// H2 dissociation rate from radiative transfer calculations (provide in units of [1/
→˓time_units] (continues on next page)

3.8. Creating the Necessary Fields 15

grackle Documentation, Release 3.1.1

(continued from previous page)

my_fields.RT_H2_dissociation_rate = new gr_float[field_size];

Note: The electron mass density should be scaled by the ratio of the proton mass to the electron mass such that the
electron density in the code is the electron number density times the proton mass.

3.9 Calling the Available Functions

There are five functions available, one to solve the chemistry and cooling and four others to calculate the cooling time,
temperature, pressure, and the ratio of the specific heats (gamma). The arguments required are the code_units
structure and the grackle_field_data struct. For the chemistry solving routine, a timestep must also be given.
For the four field calculator routines, the array to be filled with the field values must be created and passed as an
argument as well.

The examples below make use of Grackle’s Primary Functions, where the parameters and rate data are stored in in-
stances of the chemistry_data and chemistry_data_storage structs declared in grackle.h. Alternatively,
a set of Local Functions require these structs to be provided as arguments, allowing for explicitly thread-safe code.

3.9.1 Solve the Chemistry and Cooling

// some timestep (one million years)
double dt = 3.15e7 * 1e6 / my_units.time_units;

if (solve_chemistry(&my_units, &my_fields, dt) == 0) {
fprintf(stderr, "Error in solve_chemistry.\n");
return 0;

}

3.9.2 Calculating the Cooling Time

gr_float *cooling_time;
cooling_time = new gr_float[field_size];
if (calculate_cooling_time(&my_units, &my_fields,

cooling_time) == 0) {
fprintf(stderr, "Error in calculate_cooling_time.\n");
return 0;

}

3.9.3 Calculating the Temperature Field

gr_float *temperature;
temperature = new gr_float[field_size];
if (calculate_temperature(&my_units, &my_fields,

temperature) == 0) {
fprintf(stderr, "Error in calculate_temperature.\n");
return EXIT_FAILURE;

}

16 Chapter 3. Adding Grackle to Your Simulation Code

grackle Documentation, Release 3.1.1

3.9.4 Calculating the Pressure Field

gr_float *pressure;
pressure = new gr_float[field_size];
if (calculate_pressure(&my_units, &my_fields,

pressure) == 0) {
fprintf(stderr, "Error in calculate_pressure.\n");
return EXIT_FAILURE;

}

3.9.5 Calculating the Gamma Field

gr_float *gamma;
gamma = new gr_float[field_size];
if (calculate_gamma(&my_units, &my_fields,

gamma) == 0) {
fprintf(stderr, "Error in calculate_gamma.\n");
return EXIT_FAILURE;

}

3.10 Cleaning the memory

_free_chemistry_data(my_grackle_data, &grackle_rates);

Grackle is using global structures and therefore the global structure grackle_rates needs also to be released.

3.10. Cleaning the memory 17

grackle Documentation, Release 3.1.1

18 Chapter 3. Adding Grackle to Your Simulation Code

CHAPTER 4

Parameters and Data Files

4.1 Parameters

For all on/off integer flags, 0 is off and 1 is on.

int use_grackle
Flag to activate the grackle machinery. Default: 0.

int with_radiative_cooling
Flag to include radiative cooling and actually update the thermal energy during the chemistry solver. If off, the
chemistry species will still be updated. The most common reason to set this to off is to iterate the chemistry
network to an equilibrium state. Default: 1.

int primordial_chemistry
Flag to control which primordial chemistry network is used. Default: 0.

• 0: no chemistry network. Radiative cooling for primordial species is solved by interpolating from lookup
tables calculated with Cloudy.

• 1: 6-species atomic H and He. Active species: H, H+, He, He+, ++, e-.

• 2: 9-species network including atomic species above and species for molecular hydrogen formation. This
network includes formation from the H- and H2

+ channels, three-body formation (H+H+H and H+H+H2),
H2 rotational transitions, chemical heating, and collision-induced emission (optional). Active species:
above + H-, H2, H2

+.

• 3: 12-species network include all above plus HD rotation cooling. Active species: above + D, D+, HD.

Note: In order to make use of the non-equilibrium chemistry network (primordial_chemistry options 1-3),
you must add and advect baryon fields for each of the species used by that particular option.

int h2_on_dust
Flag to enable H2 formation on dust grains, dust cooling, and dust-gas heat transfer follow Omukai (2000). This
assumes that the dust to gas ratio scales with the metallicity. Default: 0.

19

http://adsabs.harvard.edu/abs/2000ApJ...534..809O

grackle Documentation, Release 3.1.1

int metal_cooling
Flag to enable metal cooling using the Cloudy tables. If enabled, the cooling table to be used must be specified
with the grackle_data_file parameter. Default: 0.

Note: In order to use the metal cooling, you must add and advect a metal density field.

int cmb_temperature_floor
Flag to enable an effective CMB temperature floor. This is implemented by subtracting the value of the cooling
rate at TCMB from the total cooling rate. Default: 1.

int UVbackground
Flag to enable a UV background. If enabled, the cooling table to be used must be specified with the
grackle_data_file parameter. Default: 0.

float UVbackground_redshift_on
Used in combination with UVbackground_redshift_fullon, UVbackground_redshift_drop,
and UVbackground_redshift_off to set an attenuation factor for the photo-heating and photo-ionization
rates of the UV background model. See the figure below for an illustration its behavior. If not set, this parameter
will be set to the highest redshift of the UV background data being used.

float UVbackground_redshift_fullon
Used in combination with UVbackground_redshift_on, UVbackground_redshift_drop, and
UVbackground_redshift_off to set an attenuation factor for the photo-heating and photo-ionization
rates of the UV background model. See the figure below for an illustration its behavior. If not set, this parameter
will be set to the highest redshift of the UV background data being used.

float UVbackground_redshift_drop
Used in combination with UVbackground_redshift_on, UVbackground_redshift_fullon, and
UVbackground_redshift_off to set an attenuation factor for the photo-heating and photo-ionization
rates of the UV background model. See the figure below for an illustration its behavior. If not set, this parameter
will be set to the lowest redshift of the UV background data being used.

float UVbackground_redshift_off
Used in combination with UVbackground_redshift_on, UVbackground_redshift_fullon, and
UVbackground_redshift_drop to set an attenuation factor for the photo-heating and photo-ionization
rates of the UV background model. See the figure below for an illustration its behavior. If not set, this parameter
will be set to the lowest redshift of the UV background data being used.

char* grackle_data_file
Path to the data file containing the metal cooling and UV background tables. Default: “”.

20 Chapter 4. Parameters and Data Files

grackle Documentation, Release 3.1.1

float Gamma
The ratio of specific heats for an ideal gas. A direct calculation for the molecular component is used if
primordial_chemistry > 1. Default: 5/3.

int three_body_rate
Flag to control which three-body H2 formation rate is used.

• 0: Abel, Bryan & Norman (2002)

• 1: Palla, Salpeter & Stahler (1983)

• 2: Cohen & Westberg (1983)

• 3: Flower & Harris (2007)

• 4: Glover (2008)

• 5: Forrey (2013).

The first five options are discussed in Turk et. al. (2011). Default: 0.

int cie_cooling
Flag to enable H2 collision-induced emission cooling from Ripamonti & Abel (2004). Default: 0.

int h2_optical_depth_approximation
Flag to enable H2 cooling attenuation from Ripamonti & Abel (2004). Default: 0.

int photoelectric_heating
Flag to enable a spatially uniform heating term approximating photo-electric heating from dust from Tasker &
Bryan (2008). Default: 0.

int photoelectric_heating_rate
If photoelectric_heating is enabled, the heating rate in units of (erg cm-3 s-1) n-1, where n is the total
hydrogen number density. In other words, this is the volumetric heating rate at a hydrogen number density of n
= 1 cm-3. Default: 8.5e-26.

int Compton_xray_heating
Flag to enable Compton heating from an X-ray background following Madau & Efstathiou (1999). Default: 0.

float LWbackground_intensity
Intensity of a constant Lyman-Werner H2 photo-dissociating radiation field in units of 10-21 erg s-1 cm-2 Hz-1

sr-1. Default: 0.

int LWbackground_sawtooth_suppression
Flag to enable suppression of Lyman-Werner flux due to Lyman-series absorption (giving a sawtooth pattern),
taken from Haiman & Abel, & Rees (2000). Default: 0.

float HydrogenFractionByMass
The fraction by mass of Hydrogen in the metal-free portion of the gas (i.e., just the H and He). In the non-
equilibrium solver, this is used to ensure consistency in the densities of the individual species. In tabulated
mode, this is used to calculate the H number density from the total gas density, which is a parameter of the
heating/cooling tables. When using the non-equilibrium solver, a sensible default is 0.76. However, the tables
for tabulated mode were created assuming nHe/nH = 0.1, which corresponds to an H mass fraction of about 0.716.
When running in tabulated mode, this parameter will automatically be changed to this value. Default: 0.76.

float DeuteriumToHydrogenRatio
The ratio by mass of Deuterium to Hydrogen. Default: 6.8e-5 (the value from Burles & Tytler (1998) multiplied
by 2 for the mass of Deuterium).

float SolarMetalFractionByMass
The fraction of total gas mass in metals for a solar composition. Default: 0.01295 (consistent with the default
abundances in the Cloudy code).

4.1. Parameters 21

http://adsabs.harvard.edu/abs/2002Sci...295...93A
http://adsabs.harvard.edu/abs/1983ApJ...271..632P
http://adsabs.harvard.edu/abs/1983JPCRD..12..531C
http://adsabs.harvard.edu/abs/2007MNRAS.377..705F
http://adsabs.harvard.edu/abs/2008AIPC..990...25G
http://adsabs.harvard.edu/abs/2013ApJ...773L..25F
http://adsabs.harvard.edu/abs/2011ApJ...726...55T
http://adsabs.harvard.edu/abs/2004MNRAS.348.1019R
http://adsabs.harvard.edu/abs/2004MNRAS.348.1019R
http://adsabs.harvard.edu/abs/2008ApJ...673..810T
http://adsabs.harvard.edu/abs/2008ApJ...673..810T
http://adsabs.harvard.edu/abs/1999ApJ...517L...9M
http://adsabs.harvard.edu/abs/2000ApJ...534...11H
https://ui.adsabs.harvard.edu/abs/1998ApJ...507..732B/abstract

grackle Documentation, Release 3.1.1

int use_volumetric_heating_rate
Flag to signal that an array of volumetric heating rates is being provided in the
volumetric_heating_rate field of the grackle_field_data struct. Default: 0.

int use_specific_heating_rate
Flag to signal that an array of specific heating rates is being provided in the specific_heating_rate field
of the grackle_field_data struct. Default: 0.

int use_radiative_transfer
Flag to signal that arrays of ionization and heating rates from radiative transfer solutions are be-
ing provided. Only available if primordial_chemistry is greater than 0. HI, HeI, and HeII
ionization arrays are provided in RT_HI_ionization_rate, RT_HeI_ionization_rate, and
RT_HeII_ionization_rate fields, respectively, of the grackle_field_data struct. Associated
heating rate is provided in the RT_heating_rate field, and H2photodissociation rate can also be provided in
the RT_H2_dissociation_rate field when primordial_chemistry is set to either 2 or 3. Default:
0.

int radiative_transfer_coupled_rate_solver
When used with use_radiative_transfer set to 1, this flag makes it possible to solve the chemistry and
cooling of the computational elements for which the radiation field is non-zero separately from those with no
incident radiation. This allows radiation transfer calculations to be performed on a smaller timestep than the
global timestep. The parameter, radiative_transfer_intermediate_step, is then used to toggle
between updating the cells/particles receiving radiative input and those that are not. Default: 0.

int radiative_transfer_intermediate_step
Used in conjunction with radiative_transfer_coupled_rate_solver set to 1, setting this parame-
ter to 1 tells the solver to only update cells/particles where the radiation field is non-zero. Setting this to 0 updates
only those elements with no incident radiation. When radiative_transfer_coupled_rate_solver
is set to 0, changing this parameter will have no effect. Default: 0.

int radiative_transfer_hydrogen_only
Flag to only use hydrogen ionization and heating rates from the radiative transfer solutions. Default: 0.

int H2_self_shielding
Switch to enable approximate H2 self-shielding from both the UV background dissociation rate and the H2
dissociation rate given by RT_H2_dissociation_rate (if present). Three options exist for the length
scale used in calculating the H2 column density. Default: 0.

• 1: Use a Sobolev-like, spherically averaged method from Wolcott-Green et. al. 2011. This option is only
valid for Cartesian grid codes in 3D.

• 2: Supply an array of lengths using the H2_self_shielding_length field.

• 3: Use the local Jeans length.

int self_shielding_method
Switch to enable approximate self-shielding from the UV background. All three of the below methods in-
corporate Eq. 13 and 14 from Rahmati et. al. 2013. These equations involve using the spectrum averaged
photoabsorption cross for the given species (HI or HeI). These redshift dependent values are pre-computed for
the HM2012 and FG2011 UV backgrounds and included in their respective cooling data tables. Default: 0

Care is advised in using any of these methods. The default behavior is to apply no self-shielding, but this is
not necessarily the proper assumption, depending on the use case. If the user desires to turn on self-shielding,
we strongly advise using option 3. All options include HI self-shielding, and vary only in treatment of HeI and
HeII. In options 2 and 3, we approximately account for HeI self-shielding by applying the Rahmati et. al. 2013
relations, which are only strictly valid for HI, to HeI under the assumption that it behaves similarly to HI. None
of these options are completely correct in practice, but option 3 has produced the most reasonable results in test
simulations. Repeating the analysis of Rahmati et. al. 2013 to directly parameterize HeI and HeII self-shielding

22 Chapter 4. Parameters and Data Files

http://adsabs.harvard.edu/abs/2011MNRAS.418..838W
http://adsabs.harvard.edu/abs/2013MNRAS.430.2427R

grackle Documentation, Release 3.1.1

behavior would be a valuable avenue of future research in developing a more complete self-shielding model.
Each self-shielding option is described below.

• 0: No self shielding. Elements are optically thin to the UV background.

• 1: Not Recommended. Approximate self-shielding in HI only. HeI and HeII are left as optically thin.

• 2: Approximate self-shielding in both HI and HeI. HeII remains optically thin.

• 3: Approximate self-shielding in both HI and HeI, but ignoring HeII ionization and heating from the
UV background entirely (HeII ionization and heating rates are set to zero).

These methods only work in conjunction with using updated Cloudy cooling tables, denoted with “_shielding”.
These tables properly account for the decrease in metal line cooling rates in self-shielded regions, which can be
significant.

For consistency, when primordial_chemistry > 2, the self-shielding attenutation factors calculated for
HI and HeI are applied to the H2ionization (15.4 eV) and H2

+ dissociation rates (30 eV) respectively. These
reaction rates are distinct from the H2self-shielding computed using the H2_self_shielding flag.

int omp_nthreads
Sets the number of OpenMP threads. If not set, this will be set to the maximum number of threads possible,
as determined by the system or as configured by setting the OMP_NUM_THREADS environment variable. Note,
Grackle must be compiled with OpenMP support enabled. See Running with OpenMP.

4.2 Data Files

All data files are located in the input directory in the source.

The first three files contain the heating and cooling rates for both primordial and metal species as well as the UV
background photo-heating and photo-ionization rates. For all three files, the valid density and temperature range is
given below. Extrapolation is performed when outside of the data range. The metal cooling rates are stored for solar
metallicity and scaled linearly with the metallicity of the gas.

Valid range:

• number density: -10 < log10 (nH / cm-3) < 4

• temperature: the temperature range is 1 < log10 (T / K) < 9.

Data files:

• CloudyData_noUVB.h5 - cooling rates for collisional ionization equilibrium.

• CloudyData_UVB=FG2011.h5 - heating and cooling rates and UV background rates from the work of Faucher-
Giguere et. al. (2009), updated in 2011. The maxmimum redshift is 10.6. Above that, collisional ionization
equilibrium is assumed.

• CloudyData_UVB=HM2012.h5 - heating and cooling rates and UV background rates from the work of Haardt
& Madau (2012). The maximum redshift is 15.13. Above that, collisional ionization equilibrium is assumed.

To use the self-shielding approximation (see self_shielding_method), one must properly account for the
change in metal line cooling rates in self-shielded regions. Using the optically thin tables described above can re-
sult in an order of magnitude overestimation in the net cooling rate at certain densities. We have re-computed these
tables by constructing Jeans-length depth models in Cloudy at each density - temperature pair, tabulating the cooling
and heating rates from the core of each of these clouds. These models enforce a maximum depth of 100 pc. In addition,
these tables contain the spectrum averaged absorption cross sections needed for the Rahmati et. al. 2013 self-shielding
approximations. Currently only the HM2012 table has been recomputed.

• CloudyData_UVB=HM2012_shielded.h5 - updated heating and cooling rates with the HM2012 UV back-
ground, accounting for self-shielding.

4.2. Data Files 23

http://adsabs.harvard.edu/abs/2009ApJ...703.1416F
http://adsabs.harvard.edu/abs/2009ApJ...703.1416F
http://adsabs.harvard.edu/abs/2012ApJ...746..125H
http://adsabs.harvard.edu/abs/2012ApJ...746..125H

grackle Documentation, Release 3.1.1

• CloudyData_UVB=FG2011_shielded.h5 - updated heating and cooling rates with the FG2011 UV back-
ground, accounting for self-shielding.

The final file includes only metal cooling rates under collisional ionization equilibrium, i.e., no incident radiation field.
This table extends to higher densities and also varies in metallicity rather than scaling proportional to the solar value.
This captures the thermalization of metal coolants occuring at high densities, making this table more appropriate for
simulations of collapsing gas-clouds.

Valid range:

• number density: -6 < log10 (nH / cm-3) < 12

• metallicity: -6 < log10 (Z / Zsun) < 1

• temperature: the temperature range is 1 < log10 (T / K) < 8.

Data file:

• cloudy_metals_2008_3D.h5 - collisional ionization equilibrium, metal cooling rates only.

24 Chapter 4. Parameters and Data Files

CHAPTER 5

API Reference

Grackle has three versions of most functions.

1. The Primary Functions, discussed in Calling the Available Functions, make use of internally stored instances
of the chemistry_data and chemistry_data_storage structs declared in grackle.h.

2. Local Functions require pointers to chemistry_data and chemistry_data_storage instances to be
provided as arguments. These are explicity thread-safe as they use no global data.

3. Internal Functions take pointers to individual field arrays instead of using the grackle_field_data struct.
These are mainly used by the Python interface.

5.1 Primary Functions

int set_default_chemistry_parameters(chemistry_data *my_grackle_data);
Initializes the grackle_data data structure. This must be called before run-time parameters can be set.

Parameters

• my_grackle_data (chemistry_data*) – run-time parameters

Return type int

Returns 1 (success) or 0 (failure)

int initialize_chemistry_data(code_units *my_units);
Loads all chemistry and cooling data, given the set run-time parameters. This can only be called after
set_default_chemistry_parameters().

Parameters

• my_units (code_units*) – code units conversions

Return type int

Returns 1 (success) or 0 (failure)

25

grackle Documentation, Release 3.1.1

int solve_chemistry(code_units *my_units, grackle_field_data *my_fields, double dt_value);
Evolves the species densities and internal energies over a given timestep by solving the chemistry and cooling
rate equations.

Parameters

• my_units (code_units*) – code units conversions

• my_fields (grackle_field_data*) – field data storage

• dt_value (double) – the integration timestep in code units

Return type int

Returns 1 (success) or 0 (failure)

int calculate_cooling_time(code_units *my_units, grackle_field_data *my_fields, gr_float *cooling_time);
Calculates the instantaneous cooling time.

Parameters

• my_units (code_units*) – code units conversions

• my_fields (grackle_field_data*) – field data storage

• cooling_time (gr_float*) – array which will be filled with the calculated cooling
time values

Return type int

Returns 1 (success) or 0 (failure)

int calculate_gamma(code_units *my_units, grackle_field_data *my_fields, gr_float *my_gamma);
Calculates the effective adiabatic index. This is only useful with primordial_chemistry >= 2 as the only
thing that alters gamma from the single value is H2.

Parameters

• my_units (code_units*) – code units conversions

• my_fields (grackle_field_data*) – field data storage

• my_gamma (gr_float*) – array which will be filled with the calculated gamma values

Return type int

Returns 1 (success) or 0 (failure)

int calculate_pressure(code_units *my_units, grackle_field_data *my_fields, gr_float *pressure);
Calculates the gas pressure.

Parameters

• my_units (code_units*) – code units conversions

• my_fields (grackle_field_data*) – field data storage

• pressure (gr_float*) – array which will be filled with the calculated pressure values

Return type int

Returns 1 (success) or 0 (failure)

int calculate_temperature(code_units *my_units, grackle_field_data *my_fields, gr_float *temperature);
Calculates the gas temperature.

Parameters

• my_units (code_units*) – code units conversions

26 Chapter 5. API Reference

grackle Documentation, Release 3.1.1

• my_fields (grackle_field_data*) – field data storage

• temperature (gr_float*) – array which will be filled with the calculated temperature
values

Return type int

Returns 1 (success) or 0 (failure)

5.2 Local Functions

These can be used to create explicitly thread-safe code or to call the various functions with different parameter values
within a single code. The chemistry_data and chemistry_data_storage structs should be setup using the
initialization functions discussed in Internal Functions.

int local_solve_chemistry(chemistry_data *my_chemistry, chemistry_data_storage *my_rates, code_units *my_units, grackle_field_data *my_fields, double dt_value);
Evolves the species densities and internal energies over a given timestep by solving the chemistry and cooling
rate equations.

Parameters

• my_chemistry (chemistry_data*) – the structure returned by
_set_default_chemistry_parameters()

• my_rates (chemistry_data_storage*) – chemistry and cooling rate data structure

• my_units (code_units*) – code units conversions

• my_fields (grackle_field_data*) – field data storage

• dt_value (double) – the integration timestep in code units

Return type int

Returns 1 (success) or 0 (failure)

int local_calculate_cooling_time(chemistry_data *my_chemistry, chemistry_data_storage *my_rates, code_units *my_units, grackle_field_data *my_fields, gr_float *cooling_time);
Calculates the instantaneous cooling time.

Parameters

• my_chemistry (chemistry_data*) – the structure returned by
_set_default_chemistry_parameters()

• my_rates (chemistry_data_storage*) – chemistry and cooling rate data structure

• my_units (code_units*) – code units conversions

• my_fields (grackle_field_data*) – field data storage

• cooling_time (gr_float*) – array which will be filled with the calculated cooling
time values

Return type int

Returns 1 (success) or 0 (failure)

int local_calculate_gamma(chemistry_data *my_chemistry, chemistry_data_storage *my_rates, code_units *my_units, grackle_field_data *my_fields, gr_float *my_gamma);
Calculates the effective adiabatic index. This is only useful with primordial_chemistry >= 2 as the only
thing that alters gamma from the single value is H2.

Parameters

5.2. Local Functions 27

grackle Documentation, Release 3.1.1

• my_chemistry (chemistry_data*) – the structure returned by
_set_default_chemistry_parameters()

• my_rates (chemistry_data_storage*) – chemistry and cooling rate data structure

• my_units (code_units*) – code units conversions

• my_fields (grackle_field_data*) – field data storage

• my_gamma (gr_float*) – array which will be filled with the calculated gamma values

Return type int

Returns 1 (success) or 0 (failure)

int local_calculate_pressure(chemistry_data *my_chemistry, chemistry_data_storage *my_rates, code_units *my_units, grackle_field_data *my_fields, gr_float *pressure);
Calculates the gas pressure.

Parameters

• my_chemistry (chemistry_data*) – the structure returned by
_set_default_chemistry_parameters()

• my_rates (chemistry_data_storage*) – chemistry and cooling rate data structure

• my_units (code_units*) – code units conversions

• my_fields (grackle_field_data*) – field data storage

• pressure (gr_float*) – array which will be filled with the calculated pressure values

Return type int

Returns 1 (success) or 0 (failure)

int local_calculate_temperature(chemistry_data *my_chemistry, chemistry_data_storage *my_rates, code_units *my_units, grackle_field_data *my_fields, gr_float *temperature);
Calculates the gas temperature.

Parameters

• my_chemistry (chemistry_data*) – the structure returned by
_set_default_chemistry_parameters()

• my_rates (chemistry_data_storage*) – chemistry and cooling rate data structure

• my_units (code_units*) – code units conversions

• my_fields (grackle_field_data*) – field data storage

• temperature (gr_float*) – array which will be filled with the calculated temperature
values

Return type int

Returns 1 (success) or 0 (failure)

5.3 Internal Functions

These functions are mostly for internal use. The initialization functions described here can be used in conjunction with
the Local Functions.

chemistry_data _set_default_chemistry_parameters(void);
Initializes and returns chemistry_data data structure. This must be called before run-time parameters can
be set.

28 Chapter 5. API Reference

grackle Documentation, Release 3.1.1

Returns data structure containing all run-time parameters and all chemistry and cooling data arrays

Return type chemistry_data

int _initialize_chemistry_data(chemistry_data *my_chemistry, chemistry_data_storage *my_rates, code_units *my_units);
Creates all chemistry and cooling rate data and stores within the provided chemistry_data_storage
struct. This can only be called after _set_default_chemistry_parameters().

Parameters

• my_chemistry (chemistry_data*) – the structure returned by
_set_default_chemistry_parameters()

• my_rates (chemistry_data_storage*) – chemistry and cooling rate data structure

• my_units (code_units*) – code units conversions

Return type int

Returns 1 (success) or 0 (failure)

int _solve_chemistry(chemistry_data *my_chemistry, chemistry_data_storage *my_rates, code_units *my_units, double dt_value, int grid_rank, int *grid_dimension, int *grid_start, int *grid_end, gr_float *density, gr_float *internal_energy, gr_float *x_velocity, gr_float *y_velocity, gr_float *z_velocity, gr_float *HI_density, gr_float *HII_density, gr_float *HM_density, gr_float *HeI_density, gr_float *HeII_density, gr_float *HeIII_density, gr_float *H2I_density, gr_float *H2II_density, gr_float *DI_density, gr_float *DII_density, gr_float *HDI_density, gr_float *e_density, gr_float *metal_density);
Evolves the species densities and internal energies over a given timestep by solving the chemistry and cooling
rate equations.

Parameters

• my_chemistry (chemistry_data*) – the structure returned by
_set_default_chemistry_parameters()

• my_rates (chemistry_data_storage*) – chemistry and cooling rate data structure

• my_units (code_units*) – code units conversions

• dt_value (double) – the integration timestep in code units

• grid_rank (int) – the dimensionality of the grid

• grid_dimension (int*) – array holding the size of the baryon field in each dimension

• grid_start (int*) – array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

• grid_end (int*) – array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

• density (gr_float*) – array containing the density values in code units

• internal_energy (gr_float*) – array containing the specific internal energy values
in code units corresponding to erg/g

• x_velocity (gr_float*) – array containing the x velocity values in code units

• y_velocity (gr_float*) – array containing the y velocity values in code units

• z_velocity (gr_float*) – array containing the z velocity values in code units

• HI_density (gr_float*) – array containing the HI densities in code units equivalent
those of the density array. Used with primordial_chemistry >= 1.

• HII_density (gr_float*) – array containing the HII densities in code units equivalent
those of the density array. Used with primordial_chemistry >= 1.

• HM_density (gr_float*) – array containing the H- densities in code units equivalent
those of the density array. Used with primordial_chemistry >= 2.

5.3. Internal Functions 29

grackle Documentation, Release 3.1.1

• HeI_density (gr_float*) – array containing the HeI densities in code units equivalent
those of the density array. Used with primordial_chemistry >= 1.

• HeII_density (gr_float*) – array containing the HeII densities in code units equiv-
alent those of the density array. Used with primordial_chemistry >= 1.

• HeIII_density (gr_float*) – array containing the HeIII densities in code units
equivalent those of the density array. Used with primordial_chemistry >= 1.

• H2I_density (gr_float*) – array containing the H2: densities in code units equivalent
those of the density array. Used with primordial_chemistry >= 2.

• H2II_density (gr_float*) – array containing the H2
+densities in code units equiva-

lent those of the density array. Used with primordial_chemistry >= 2.

• DI_density (gr_float*) – array containing the DI (deuterium) densities in code units
equivalent those of the density array. Used with primordial_chemistry = 3.

• DII_density (gr_float*) – array containing the DII densities in code units equivalent
those of the density array. Used with primordial_chemistry = 3.

• HDI_density (gr_float*) – array containing the HD densities in code units equivalent
those of the density array. Used with primordial_chemistry = 3.

• e_density (gr_float*) – array containing the e- densities in code units equivalent
those of the density array but normalized to the ratio of the proton to electron mass. Used
with primordial_chemistry >= 1.

• metal_density (gr_float*) – array containing the metal densities in code units
equivalent those of the density array. Used with metal_cooling = 1.

Return type int

Returns 1 (success) or 0 (failure)

int _calculate_cooling_time(chemistry_data *my_chemistry, chemistry_data_storage *my_rates, code_units *my_units, int grid_rank, int *grid_dimension, int *grid_start, int *grid_end, gr_float *density, gr_float *internal_energy, gr_float *x_velocity, gr_float *y_velocity, gr_float *z_velocity, gr_float *HI_density, gr_float *HII_density, gr_float *HM_density, gr_float *HeI_density, gr_float *HeII_density, gr_float *HeIII_density, gr_float *H2I_density, gr_float *H2II_density, gr_float *DI_density, gr_float *DII_density, gr_float *HDI_density, gr_float *e_density, gr_float *metal_density, gr_float *cooling_time);
Calculates the instantaneous cooling time.

Parameters

• my_chemistry (chemistry_data*) – the structure returned by
_set_default_chemistry_parameters()

• my_rates (chemistry_data_storage*) – chemistry and cooling rate data structure

• my_units (code_units*) – code units conversions

• grid_rank (int) – the dimensionality of the grid

• grid_dimension (int*) – array holding the size of the baryon field in each dimension

• grid_start (int*) – array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

• grid_end (int*) – array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

• density (gr_float*) – array containing the density values in code units

• internal_energy (gr_float*) – array containing the specific internal energy values
in code units corresponding to erg/g

• x_velocity, y_velocity, z_velocity (gr_float*) – arrays containing the
x, y, and z velocity values in code units

30 Chapter 5. API Reference

grackle Documentation, Release 3.1.1

• HI_density, HII_density, HM_density, HeI_density,
HeII_density, HeIII_density, H2I_density, H2II_density,
DI_density, DII_density, HDI_density, e_density,
metal_density (gr_float*) – arrays containing the species densities in code
units equivalent those of the density array

• cooling_time (gr_float*) – array which will be filled with the calculated cooling
time values

Return type int

Returns 1 (success) or 0 (failure)

int _calculate_gamma(chemistry_data *my_chemistry, chemistry_data_storage *my_rates, code_units *my_units, int grid_rank, int *grid_dimension, int *grid_start, int *grid_end, gr_float *density, gr_float *internal_energy, gr_float *HI_density, gr_float *HII_density, gr_float *HM_density, gr_float *HeI_density, gr_float *HeII_density, gr_float *HeIII_density, gr_float *H2I_density, gr_float *H2II_density, gr_float *DI_density, gr_float *DII_density, gr_float *HDI_density, gr_float *e_density, gr_float *metal_density, gr_float *my_gamma);
Calculates the effective adiabatic index. This is only useful with primordial_chemistry >= 2 as the only
thing that alters gamma from the single value is H2.

Parameters

• my_chemistry (chemistry_data*) – the structure returned by
_set_default_chemistry_parameters()

• my_rates (chemistry_data_storage*) – chemistry and cooling rate data structure

• my_units (code_units*) – code units conversions

• grid_rank (int) – the dimensionality of the grid

• grid_dimension (int*) – array holding the size of the baryon field in each dimension

• grid_start (int*) – array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

• grid_end (int*) – array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

• density (gr_float*) – array containing the density values in code units

• internal_energy (gr_float*) – array containing the specific internal energy values
in code units corresponding to erg/g

• HI_density, HII_density, HM_density, HeI_density,
HeII_density, HeIII_density, H2I_density, H2II_density,
DI_density, DII_density, HDI_density, e_density,
metal_density (gr_float*) – arrays containing the species densities in code
units equivalent those of the density array

• my_gamma (gr_float*) – array which will be filled with the calculated gamma values

Return type int

Returns 1 (success) or 0 (failure)

int _calculate_pressure(chemistry_data *my_chemistry, chemistry_data_storage *my_rates, code_units *my_units, int grid_rank, int *grid_dimension, int *grid_start, int *grid_end, gr_float *density, gr_float *internal_energy, gr_float *HI_density, gr_float *HII_density, gr_float *HM_density, gr_float *HeI_density, gr_float *HeII_density, gr_float *HeIII_density, gr_float *H2I_density, gr_float *H2II_density, gr_float *DI_density, gr_float *DII_density, gr_float *HDI_density, gr_float *e_density, gr_float *metal_density, gr_float *pressure);
Calculates the gas pressure.

Parameters

• my_chemistry (chemistry_data*) – the structure returned by
_set_default_chemistry_parameters()

• my_rates (chemistry_data_storage*) – chemistry and cooling rate data structure

• my_units (code_units*) – code units conversions

• grid_rank (int) – the dimensionality of the grid

5.3. Internal Functions 31

grackle Documentation, Release 3.1.1

• grid_dimension (int*) – array holding the size of the baryon field in each dimension

• grid_start (int*) – array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

• grid_end (int*) – array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

• density (gr_float*) – array containing the density values in code units

• internal_energy (gr_float*) – array containing the specific internal energy values
in code units corresponding to erg/g

• HI_density, HII_density, HM_density, HeI_density,
HeII_density, HeIII_density, H2I_density, H2II_density,
DI_density, DII_density, HDI_density, e_density,
metal_density (gr_float*) – arrays containing the species densities in code
units equivalent those of the density array

• pressure (gr_float*) – array which will be filled with the calculated pressure values

Return type int

Returns 1 (success) or 0 (failure)

int _calculate_temperature(chemistry_data *my_chemistry, chemistry_data_storage *my_rates, code_units *my_units, int grid_rank, int *grid_dimension, int *grid_start, int *grid_end, gr_float *density, gr_float *internal_energy, gr_float *HI_density, gr_float *HII_density, gr_float *HM_density, gr_float *HeI_density, gr_float *HeII_density, gr_float *HeIII_density, gr_float *H2I_density, gr_float *H2II_density, gr_float *DI_density, gr_float *DII_density, gr_float *HDI_density, gr_float *e_density, gr_float *metal_density, gr_float *temperature);

Parameters

• my_chemistry (chemistry_data*) – the structure returned by
_set_default_chemistry_parameters()

• my_rates (chemistry_data_storage*) – chemistry and cooling rate data structure

• my_units (code_units*) – code units conversions

• grid_rank (int) – the dimensionality of the grid

• grid_dimension (int*) – array holding the size of the baryon field in each dimension

• grid_start (int*) – array holding the starting indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones

• grid_end (int*) – array holding the ending indices in each dimension of the active
portion of the baryon fields. This is used to ignore ghost zones.

• density (gr_float*) – array containing the density values in code units

• internal_energy (gr_float*) – array containing the specific internal energy values
in code units corresponding to erg/g

• HI_density, HII_density, HM_density, HeI_density,
HeII_density, HeIII_density, H2I_density, H2II_density,
DI_density, DII_density, HDI_density, e_density,
metal_density (gr_float*) – arrays containing the species densities in code
units equivalent those of the density array

• temperature (gr_float*) – array which will be filled with the calculated temperature
values

Return type int

Returns 1 (success) or 0 (failure)

Calculates the gas temperature.

32 Chapter 5. API Reference

CHAPTER 6

Pygrackle: Running Grackle in Python

Grackle comes with a Python interface, called Pygrackle, which provides access to all of Grackle’s functionality.
Pygrackle requires the following Python packages:

• Cython

• flake8 (only required for the test suite)

• matplotlib

• NumPy

• py.test (only required for the test suite)

• yt

The easiest thing to do is follow the instructions for installing yt, which will provide you with Cython, matplotlib, and
NumPy. Flake8 and py.test can then be installed via pip.

6.1 Installing Pygrackle

Once the Grackle library has been built and the above dependencies have been installed, Pygrackle can be installed by
moving into the src/python directory and running python setup.py install.

~/grackle $ cd src/python
~/grackle/src/python $ python setup.py install

Note: Pygrackle can only be run when Grackle is compiled without OpenMP. See Running with OpenMP.

33

http://www.cython.org/
http://matplotlib.org/
http://www.numpy.org/
http://yt-project.org/

grackle Documentation, Release 3.1.1

6.2 Running the Example Scripts

A number of example scripts are available in the src/python/examples directory. These scripts provide examples of
ways that Grackle can be used in simplified models, such as solving the temperature evolution of a parcel of gas at
constant density or in a free-fall model. Each example will produce a figure as well as a dataset that can be loaded and
analyzed with yt.

6.2.1 Cooling Rate Figure Example

This sets up a one-dimensional grid at a constant density with logarithmically spaced temperatures from 10 K to 109

K. Radiative cooling is disabled and the chemistry solver is iterated until the species fractions have converged. The
cooling time is then calculated and used to compute the cooling rate.

python cooling_rate.py

After the script runs, and hdf5 file will be created with a similar name. This can be loaded in with yt.

>>> import yt
>>> ds = yt.load("cooling_rate.h5")
>>> print ds.data["temperature"]
[1.00000000e+01 1.09698580e+01 1.20337784e+01 1.32008840e+01, ...,

7.57525026e+08 8.30994195e+08 9.11588830e+08 1.00000000e+09] K
>>> print ds.data["cooling_rate"]
[1.09233398e-25 1.08692516e-25 1.08117583e-25 1.07505345e-25, ...,

3.77902570e-23 3.94523273e-23 4.12003667e-23 4.30376998e-23] cm**3*erg/s

34 Chapter 6. Pygrackle: Running Grackle in Python

http://yt-project.org/

grackle Documentation, Release 3.1.1

6.2.2 Cooling Cell Example

This sets up a single grid cell with an initial density and temperature and solves the chemistry and cooling for a given
amount of time. The resulting dataset gives the values of the densities, temperatures, and mean molecular weights for
all times.

python cooling_cell.py

>>> import yt
>>> ds = yt.load("cooling_cell.h5")
>>> print ds.data["time"].to("Myr")
YTArray([0.00000000e+00, 6.74660169e-02, 1.34932034e-01, ...,

9.98497051e+01, 9.99171711e+01, 9.99846371e+01]) Myr
>>> print ds.data["temperature"]
YTArray([990014.56406726, 980007.32720091, 969992.99066987, ...,

9263.81515866, 9263.81515824, 9263.81515865]) K

6.2.3 Free-Fall Collapse Example

This sets up a single grid cell with an initial number density of 1 cm-3. The density increases with time following a
free-fall collapse model. As the density increases, thermal energy is added to model heating via adiabatic compression.
This can be useful for testing chemistry networks over a large range in density.

python freefall.py

6.2. Running the Example Scripts 35

grackle Documentation, Release 3.1.1

The resulting dataset can be analyzed similarly as above.

>>> import yt
>>> ds = yt.load("freefall.h5")
>>> print ds.data["time"].to("Myr")
[0. 0.45900816 0.91572127 ..., 219.90360841 219.90360855

219.9036087] Myr
>>> print ds.data["density"]
[1.67373522e-25 1.69059895e-25 1.70763258e-25 ..., 1.65068531e-12

1.66121253e-12 1.67178981e-12] g/cm**3
>>> print ds.data["temperature"]
[99.94958248 100.61345564 101.28160228 ..., 1728.89321898

1729.32604568 1729.75744287] K

6.2.4 Simulation Dataset Example

This provides an example of using the grackle library for calculating chemistry and cooling quantities for a pre-existing
simulation dataset. To run this example, you must also download the IsolatedGalaxy dataset from the yt sample data
page.

python run_from_yt.py

36 Chapter 6. Pygrackle: Running Grackle in Python

http://yt-project.org/data/
http://yt-project.org/data/

CHAPTER 7

Grackle Community Code of Conduct

The community of participants in open source scientific projects is made up of members from around the globe with
a diverse set of skills, personalities, and experiences. It is through these differences that our community experiences
success and continued growth. We expect everyone in our community to follow these guidelines when interacting
with others both inside and outside of our community. Our goal is to keep ours a positive, inclusive, successful, and
growing community.

As members of the community,

• We pledge to treat all people with respect and provide a harassment- and bullying-free environment, regardless
of sex, sexual orientation and/or gender identity, disability, physical appearance, body size, race, nationality,
ethnicity, and religion. In particular, sexual language and imagery, sexist, racist, or otherwise exclusionary jokes
are not appropriate.

• We pledge to respect the work of others by recognizing acknowledgment/citation requests of original authors.
As authors, we pledge to be explicit about how we want our own work to be cited or acknowledged.

• We pledge to welcome those interested in joining the community, and realize that including people with a
variety of opinions and backgrounds will only serve to enrich our community. In particular, discussions relating
to pros/cons of various technologies, programming languages, and so on are welcome, but these should be done
with respect, taking proactive measure to ensure that all participants are heard and feel confident that they can
freely express their opinions.

• We pledge to welcome questions and answer them respectfully, paying particular attention to those new to the
community. We pledge to provide respectful criticisms and feedback in forums, especially in discussion threads
resulting from code contributions.

• We pledge to be conscientious of the perceptions of the wider community and to respond to criticism respect-
fully. We will strive to model behaviors that encourage productive debate and disagreement, both within our
community and where we are criticized. We will treat those outside our community with the same respect as
people within our community.

• We pledge to help the entire community follow the code of conduct, and to not remain silent when we see
violations of the code of conduct. We will take action when members of our community violate this code such
as contacting grackle.confidential@gmail.com (all emails sent to this address will be treated with the strictest
confidence) or talking privately with the person.

37

mailto:grackle.confidential@gmail.com

grackle Documentation, Release 3.1.1

This code of conduct applies to all community situations online and offline, including mailing lists, forums, social
media, conferences, meetings, associated social events, and one-to-one interactions.

The Grackle Community Code of Conduct was adapted from the Astropy Community Code of Conduct, which was
partially inspired by the PSF code of conduct.

38 Chapter 7. Grackle Community Code of Conduct

http://www.astropy.org/about.html#codeofconduct

CHAPTER 8

How to Develop Grackle

Grackle is a community project!

We are very happy to accept patches, features, and bugfixes from any member of the community! Grackle is developed
using Git, primarily because of how well it enables open-source, community contribution. We’re eager to hear from
you.

Note: If you are already familiar with Git and GitHub, the best way to contribute is to fork the main Grackle
repository, make your changes, push them to your fork, and issue a pull request. The rest of this document is just an
explanation of how to do that.

Keep in touch, and happy hacking!

8.1 Open Issues

If you’re interested in participating in Grackle development, take a look at the issue tracker on GitHub. If you are
encountering a bug that is not already tracked there, please open a new issue.

8.2 Contributing to Grackle with Git and Github

We provide a brief introduction to submitting changes here. We encourage contributions from any user. If you are new
to Git and/or GitHub, there are excellent guides available at guides.github.com, specifically the Git Handbook, and the
GitHub Hello World. We are also happy to provide guidance on the mailing list or in our slack channel.

8.2.1 Licensing

Grackle is under the Enzo public license, a BSD-like license.

39

https://github.com
https://github.com/grackle-project/grackle
https://github.com/grackle-project/grackle
https://github.com/grackle-project/grackle/issues
https://github.com/grackle-project/grackle/issues/new
https://guides.github.com/
https://guides.github.com/introduction/git-handbook/
https://guides.github.com/activities/hello-world/

grackle Documentation, Release 3.1.1

All contributed code must be BSD-compatible. If you’d rather not license in this manner, but still want to contribute,
please consider creating an external package, which we’ll happily link to in the Grackle documentation.

8.2.2 How To Get The Source Code For Editing

Grackle is hosted on GitHub, and you can see all of the Grackle repositories at https://github.com/grackle-project/.
In order to modify the source code for Grackle, we ask that you make a “fork” of the main Grackle repository on
GitHub. A fork is simply an exact copy of the main repository (along with its history) that you will now own and
can make modifications as you please. You can create a personal fork by visiting the Grackle GitHub webpage at
https://github.com/grackle-project/grackle/. After logging in, you should see an option near the top right labeled
“fork”. You now have a forked copy of the Grackle repository for your own personal modification.

This forked copy exists on GitHub under your username, so in order to access it locally, follow the instructions at the
top of that webpage for that forked repository:

$ git clone http://bitbucket.org/<USER>/<REPOSITORY_NAME>

This downloads that new forked repository to your local machine, so that you can access it, read it, make modifications,
etc. It will put the repository in a local directory of the same name as the repository in the current working directory.

$ cd grackle

Verify that you are on the master branch of Grackle by running:

$ git branch

If you’re not on the master branch, you can get to it with:

$ git checkout master

You can see any past state of the code by using the git log command. For example, the following command would
show you the last 5 revisions (modifications to the code) that were submitted to that repository.

$ git log -n 5

Using the revision specifier (the number or hash identifier next to each changeset), you can update the local repository
to any past state of the code (a previous changeset or version) by executing the command:

$ git checkout revision_specifier

8.3 Making and Sharing Changes

The simplest way to submit changes to Grackle is to do the following:

1. Fork the main repository.

2. Clone your fork.

3. Make some changes and commit them.

4. Push the changesets to your fork.

5. Issue a pull request.

Here’s a more detailed flowchart of how to submit changes.

40 Chapter 8. How to Develop Grackle

https://github.com/grackle-project/
https://github.com/grackle-project/grackle/

grackle Documentation, Release 3.1.1

1. Fork Grackle on GitHub. (This step only has to be done once.) You can do this by clicking on the fork button
in the top-right corner of the main repository.

2. Create a new branch in which to make your changes by doing git checkout -b <new branch name>.
This will make it easy to move back and forth between the main branch of the code and your changes.

3. Edit the source file you are interested in and test your changes.

4. Use git add <files> to stage files to be committed.

5. Commit your changes with git commit. This will open a text editor so you can write a commit message.
To add your message inline, do git commit -m "<commit message>". You can list specific file to be
committed.

6. Remember that this is a large development effort and to keep the code accessible to everyone, good documen-
tation is a must. Add in source code comments for what you are doing. Add documentation to the appropriate
section of the online docs so that people other than yourself know how to use your new code.

7. If your changes include new functionality or cover an untested area of the code, add a test. Commit these
changes as well.

8. Push your changes to your new fork using the command:

$ git push origin <branch name>

Note: Note that the above approach uses HTTPS as the transfer protocol between your machine and GitHub.
If you prefer to use SSH - or perhaps you’re behind a proxy that doesn’t play well with SSL via HTTPS - you
may want to set up an SSH key on GitHub. Then, you use the syntax ssh://git@github.com/<USER>/
grackle, or equivalent, in place of https://github.com/<USER>/grackle in git commands. For
consistency, all commands we list in this document will use the HTTPS protocol.

9. Issue a pull request by going to the main repository and clicking on the green button that says Compare & pull
request. This will open up a page that will allow you to enter a description of the changes to be merged. Once
submitted, a series of automated tests will run and their status will be reported on the pull request page.

During the course of your pull request you may be asked to make changes. These changes may be related to style
issues, correctness issues, or requesting tests. The process for responding to pull request code review is relatively
straightforward.

1. Make requested changes, or leave a comment on the pull request page on GitHub indicating why you don’t think
they should be made.

2. Commit those changes to your local repository.

3. Push the changes to your fork:

$ git push origin <branch name>

4. Your pull request will be automatically updated.

Once your pull request has been accepted, you can safely delete your branch:

$ git branch --delete <branch name>

8.3.1 Updating Your Branch

If your branch or pull request has been open for some time, it may be useful to keep it up to date with the latest changes
from the main repository. This can be done by rebasing your changes. Before doing this, you will need to be able to

8.3. Making and Sharing Changes 41

https://github.com/grackle-project/grackle
https://help.github.com/articles/connecting-to-github-with-ssh/
https://git-scm.com/docs/git-rebase

grackle Documentation, Release 3.1.1

pull the latest changes from the main repository.

1. Add the main repository as a remote:

$ git remote add grackle https://github.com/grackle-project/grackle

You can verify that it has been added by doing git remote -v. This only needs to be done once.

2. Go back to the master branch and pull the changes:

$ git checkout master
$ git pull grackle master

3. Return to your branch and rebase your changes onto the head of the master branch:

$ git checkout <branch name>
$ git rebase master

This should go smoothly unless changes have been made to the same lines in the source, in which case you will need
to fix conflicts. After rebasing, you will get an error when trying to push your branch to your fork. This is because
you have changed the order of commits and git does not like that. In this case, you will need to add “-f” to your push
command to force the changes to be accepted.:

$ git push -f origin <branch name>

Have fun!

42 Chapter 8. How to Develop Grackle

CHAPTER 9

Help

9.1 Mailing List

If you have any questions, please join the Grackle Users Google Group. Feel free to post any questions or ideas for
development.

9.2 Slack Channel

We also use Slack for lower latency discussions. If you’d like help in real time, this is the place. Click here for an
invitation to our Slack channel.

43

https://groups.google.com/forum/#!forum/grackle-cooling-users
https://slack.com/
https://join.slack.com/t/grackle-project/shared_invite/enQtNDE2MTA1OTU5MDI5LWZlOTg0OWMyY2FlNWZhYjI3NTU4OWZhZDMyNDViMjE4NDYxNzkxYzI3NWQ5NTAyNDNjMTEzZGVjNTI3NGQxNWE

grackle Documentation, Release 3.1.1

44 Chapter 9. Help

CHAPTER 10

Help

10.1 Mailing List

If you have any questions, please join the Grackle Users Google Group. Feel free to post any questions or ideas for
development.

10.2 Slack Channel

We also use Slack for lower latency discussions. If you’d like help in real time, this is the place. Click here for an
invitation to our Slack channel.

45

https://groups.google.com/forum/#!forum/grackle-cooling-users
https://slack.com/
https://join.slack.com/t/grackle-project/shared_invite/enQtNDE2MTA1OTU5MDI5LWZlOTg0OWMyY2FlNWZhYjI3NTU4OWZhZDMyNDViMjE4NDYxNzkxYzI3NWQ5NTAyNDNjMTEzZGVjNTI3NGQxNWE

grackle Documentation, Release 3.1.1

46 Chapter 10. Help

CHAPTER 11

Contributing

Development of Grackle happens in the open on GitHub here. We welcome new contributors. Please, see the Grackle
Community Code of Conduct. For a guide to developing Grackle, see How to Develop Grackle.

47

https://github.com/grackle-project/grackle

grackle Documentation, Release 3.1.1

48 Chapter 11. Contributing

CHAPTER 12

Citing grackle

The Grackle method paper can be found here.

The Grackle library was born out of the chemistry and cooling routines of the Enzo simulation code. As such, all of
those who have contributed to Enzo development, and especially to the chemistry and cooling, have contributed to the
Grackle.

If you used the Grackle library in your work, please cite it as “the Grackle chemistry and cooling library (Smith et al.
2017).” Also, please add a footnote to https://grackle.readthedocs.io/.

49

http://adsabs.harvard.edu/abs/2017MNRAS.466.2217S
http://enzo-project.org/
http://adsabs.harvard.edu/abs/2017MNRAS.466.2217S
http://adsabs.harvard.edu/abs/2017MNRAS.466.2217S
https://grackle.readthedocs.io/

grackle Documentation, Release 3.1.1

50 Chapter 12. Citing grackle

CHAPTER 13

Search

• search

51

grackle Documentation, Release 3.1.1

52 Chapter 13. Search

Index

A
a_units (C variable), 11
a_value (C variable), 11

C
chemistry_data (C type), 12
chemistry_data_storage (C type), 12
cie_cooling (C variable), 21
cmb_temperature_floor (C variable), 20
code_units (C type), 10
comoving_coordinates (C variable), 11
Compton_xray_heating (C variable), 21

D
density (C variable), 13
density_units (C variable), 11
DeuteriumToHydrogenRatio (C variable), 21
DI_density (C variable), 13
DII_density (C variable), 13

E
e_density (C variable), 14

G
Gamma (C variable), 20
gr_float (C type), 10
grackle_data_file (C variable), 20
grackle_field_data (C type), 13
grid_dimension (C variable), 13
grid_dx (C variable), 13
grid_end (C variable), 13
grid_rank (C variable), 13
grid_start (C variable), 13

H
h2_on_dust (C variable), 19
h2_optical_depth_approximation (C vari-

able), 21
H2_self_shielding (C variable), 22

H2_self_shielding_length (C variable), 14
H2I_density (C variable), 13
H2II_density (C variable), 13
HDI_density (C variable), 13
HeI_density (C variable), 13
HeII_density (C variable), 13
HeIII_density (C variable), 13
HI_density (C variable), 13
HII_density (C variable), 13
HM_density (C variable), 13
HydrogenFractionByMass (C variable), 21

I
internal_energy (C variable), 14

L
length_units (C variable), 11
LWbackground_intensity (C variable), 21
LWbackground_sawtooth_suppression (C

variable), 21

M
metal_cooling (C variable), 19
metal_density (C variable), 14

O
omp_nthreads (C variable), 23

P
photoelectric_heating (C variable), 21
photoelectric_heating_rate (C variable), 21
primordial_chemistry (C variable), 19

R
R_PREC (C type), 10
radiative_transfer_coupled_rate_solver

(C variable), 22
radiative_transfer_hydrogen_only (C vari-

able), 22

53

grackle Documentation, Release 3.1.1

radiative_transfer_intermediate_step (C
variable), 22

RT_H2_dissociation_rate (C variable), 14
RT_heating_rate (C variable), 14
RT_HeI_ionization_rate (C variable), 14
RT_HeII_ionization_rate (C variable), 14
RT_HI_ionization_rate (C variable), 14

S
self_shielding_method (C variable), 22
SolarMetalFractionByMass (C variable), 21
specific_heating_rate (C variable), 14

T
three_body_rate (C variable), 21
time_units (C variable), 11

U
use_grackle (C variable), 19
use_radiative_transfer (C variable), 22
use_specific_heating_rate (C variable), 22
use_volumetric_heating_rate (C variable), 21
UVbackground (C variable), 20
UVbackground_redshift_drop (C variable), 20
UVbackground_redshift_fullon (C variable),

20
UVbackground_redshift_off (C variable), 20
UVbackground_redshift_on (C variable), 20

V
velocity_units (C variable), 11
volumetric_heating_rate (C variable), 14

W
with_radiative_cooling (C variable), 19

X
x_velocity (C variable), 14

Y
y_velocity (C variable), 14

Z
z_velocity (C variable), 14

54 Index

	Installation
	Dependencies
	Downloading
	Building

	Running the Test Suite
	Adding Grackle to Your Simulation Code
	Example Executables
	Header Files
	Data Types
	Enabling Output
	Code Units
	Chemistry Data
	Running with OpenMP
	Creating the Necessary Fields
	Calling the Available Functions
	Cleaning the memory

	Parameters and Data Files
	Parameters
	Data Files

	API Reference
	Primary Functions
	Local Functions
	Internal Functions

	Pygrackle: Running Grackle in Python
	Installing Pygrackle
	Running the Example Scripts

	Grackle Community Code of Conduct
	How to Develop Grackle
	Open Issues
	Contributing to Grackle with Git and Github
	Making and Sharing Changes

	Help
	Mailing List
	Slack Channel

	Help
	Mailing List
	Slack Channel

	Contributing
	Citing grackle
	Search
	Index

